Page 1 Next

Displaying 1 – 20 of 139

Showing per page

About the class of ordered limited operators

A. El Kaddouri, Mohammed Moussa (2013)

Acta Universitatis Carolinae. Mathematica et Physica

We give a brief survey of recent results of order limited operators related to some properties on Banach lattices.

AM-Compactness of some classes of operators

Belmesnaoui Aqzzouz, Jawad H'michane (2012)

Commentationes Mathematicae Universitatis Carolinae

We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.

An elementary proof of a theorem on sublattices of finite codimension

Marek Wójtowicz (1998)

Commentationes Mathematicae Universitatis Carolinae

This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.

Application of ( L ) sets to some classes of operators

Kamal El Fahri, Nabil Machrafi, Jawad H'michane, Aziz Elbour (2016)

Mathematica Bohemica

The paper contains some applications of the notion of Ł sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order ( L ) -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an ( L ) sets. As a sequence characterization of such operators, we see that an operator T : X E from a Banach space into a Banach lattice is order Ł -Dunford-Pettis, if and only if | T ( x n ) | 0 for σ ( E , E ' ) for every weakly null...

Currently displaying 1 – 20 of 139

Page 1 Next