Totality of product completions
Jiří Adámek; Lurdes Sousa; Walter Tholen
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 1, page 9-24
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAdámek, Jiří, Sousa, Lurdes, and Tholen, Walter. "Totality of product completions." Commentationes Mathematicae Universitatis Carolinae 41.1 (2000): 9-24. <http://eudml.org/doc/248624>.
@article{Adámek2000,
abstract = {Categories whose Yoneda embedding has a left adjoint are known as total categories and are characterized by a strong cocompleteness property. We introduce the notion of multitotal category $\mathcal \{A\}$ by asking the Yoneda embedding $\mathcal \{A\} \rightarrow [\mathcal \{A\}^\{op\},\mathcal \{S\}et]$ to be right multiadjoint and prove that this property is equivalent to totality of the formal product completion $\Pi \mathcal \{A\}$ of $\mathcal \{A\}$. We also characterize multitotal categories with various types of generators; in particular, the existence of dense generators is inherited by the formal product completion iff measurable cardinals cannot be arbitrarily large.},
author = {Adámek, Jiří, Sousa, Lurdes, Tholen, Walter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {multitotal category; multisolid functor; formal product completion; multitotal category; multisolid functor; formal product completion},
language = {eng},
number = {1},
pages = {9-24},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Totality of product completions},
url = {http://eudml.org/doc/248624},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Adámek, Jiří
AU - Sousa, Lurdes
AU - Tholen, Walter
TI - Totality of product completions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 1
SP - 9
EP - 24
AB - Categories whose Yoneda embedding has a left adjoint are known as total categories and are characterized by a strong cocompleteness property. We introduce the notion of multitotal category $\mathcal {A}$ by asking the Yoneda embedding $\mathcal {A} \rightarrow [\mathcal {A}^{op},\mathcal {S}et]$ to be right multiadjoint and prove that this property is equivalent to totality of the formal product completion $\Pi \mathcal {A}$ of $\mathcal {A}$. We also characterize multitotal categories with various types of generators; in particular, the existence of dense generators is inherited by the formal product completion iff measurable cardinals cannot be arbitrarily large.
LA - eng
KW - multitotal category; multisolid functor; formal product completion; multitotal category; multisolid functor; formal product completion
UR - http://eudml.org/doc/248624
ER -
References
top- Adámek J., Herrlich H., Strecker G.E., Abstract and Concrete Categories, John Wiley and Sons, New York, 1990. MR1051419
- Adámek J., Rosický J., Accessible and Locally Presentable Categories, Cambridge University Press, Cambridge, 1995.
- Adámek J., Tholen W., Total categories with generators, J. Algebra 133 (1990), 63-78. (1990) MR1063381
- Börger R., Tholen W., Total categories and solid functors, Canad. J. Math. 42.1 (1990), 213-229. (1990) MR1051726
- Börger R., Tholen W., Wischnewsky M.B., Wolff H., Compact and hypercomplete categories, J. Pure Appl. Algebra 21 (1981), 120-140. (1981) MR0614376
- Carboni A., Johnstone P.T., Connected limits, familial representability and Artin glueing, Math. Struct. in Comp. Science 5 (1995), 1-19. (1995) Zbl0849.18002MR1377312
- Diers Y., Catègories localisables, These de doctorat d'état, Université Pierre et Marie Curie - Paris 6, 1977.
- Diers Y., Catègories localement multiprésentables, Arch. Math. 34 (1980), 344-356. (1980) Zbl0453.18002MR0593951
- Gabriel P., Ulmer F., Lokal präsentierbare Kategorien, Lecture Notes in Math. 221, Springer, Berlin, 1971. Zbl0225.18004MR0327863
- Isbell J.R., Adequate subcategories, Illinois J. Math. 4 (1960), 541-552. (1960) Zbl0104.01704MR0175954
- Kelly M., A survey of totality for enriched and ordinary categories, Cahiers Topologie Géom. Différentielle Catégoriques 27 (1986), 109-131. (1986) Zbl0593.18007MR0850527
- Rosický J., Tholen W., Accessibility and the solution set condition, J. Pure Appl. Algebra 98 (1995), 189-208. (1995) MR1319969
- Sousa L., Note on multisolid categories, J. Pure Appl. Algebra 129 (1998), 201-205. (1998) Zbl0939.18003MR1624462
- Street R., The family approach to total cocompleteness and toposes, Trans. Amer. Math. Soc. 284 (1984), 355-369. (1984) Zbl0512.18001MR0742429
- Street R., Walters R.F.C., Yoneda structures on -categories, J. Algebra 50 (1978), 350-379. (1978) Zbl0401.18004MR0463261
- Tholen W., Semi-topological functors I, J. Pure Appl. Algebra 15 (1979), 53-73. (1979) Zbl0413.18001
- Tholen W., Note on total categories, Bull. Austral. Math. Soc. 21 (1980), 169-173. (1980) Zbl0431.18002MR0574836
- Tholen W., MacNeille completions of concrete categories with local properties, Comment. Math., Univ. St. Pauli 28 (1979), 179-202. (1979) MR0578672
- Wood R.J., Some remarks on total categories, J. Algebra 75 (1982), 538-545. (1982) Zbl0504.18001MR0653907
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.