Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Exponential Objects

Marco Riccardi (2015)

Formalized Mathematics

In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...

Models of sketches

Michael Barr (1986)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Object-Free Definition of Categories

Marco Riccardi (2013)

Formalized Mathematics

Category theory was formalized in Mizar with two different approaches [7], [18] that correspond to those most commonly used [16], [5]. Since there is a one-to-one correspondence between objects and identity morphisms, some authors have used an approach that does not refer to objects as elements of the theory, and are usually indicated as object-free category [1] or as arrowsonly category [16]. In this article is proposed a new definition of an object-free category, introducing the two properties:...

On the L -valued categories of L - E -ordered sets

Olga Grigorenko (2012)


The aim of this paper is to construct an L -valued category whose objects are L - E -ordered sets. To reach the goal, first, we construct a category whose objects are L - E -ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an L -valued category. Further we investigate the properties of this category, namely, we observe some special objects, special...

Currently displaying 1 – 20 of 29

Page 1 Next