Multiple solutions of a Schrödinger type semilinear equation
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 735-745
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLiu, Xiaochun, and Yang, Jianfu. "Multiple solutions of a Schrödinger type semilinear equation." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 735-745. <http://eudml.org/doc/248627>.
@article{Liu2000,
abstract = {Two nontrivial solutions are obtained for nonhomogeneous semilinear Schrödinger equations.},
author = {Liu, Xiaochun, Yang, Jianfu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Schrödinger equation; multiple solutions; nonlinear Schrödinger equation; multiple solutions; Lyapunov-Schmidt reduction; mountain pass theorem},
language = {eng},
number = {4},
pages = {735-745},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Multiple solutions of a Schrödinger type semilinear equation},
url = {http://eudml.org/doc/248627},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Liu, Xiaochun
AU - Yang, Jianfu
TI - Multiple solutions of a Schrödinger type semilinear equation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 735
EP - 745
AB - Two nontrivial solutions are obtained for nonhomogeneous semilinear Schrödinger equations.
LA - eng
KW - Schrödinger equation; multiple solutions; nonlinear Schrödinger equation; multiple solutions; Lyapunov-Schmidt reduction; mountain pass theorem
UR - http://eudml.org/doc/248627
ER -
References
top- Ambrosetti A., Prodi G., On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246. (1972) Zbl0288.35020MR0320844
- Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and application, J. Funct. Anal. 14 (1973), 231-246. (1973) MR0370183
- Buffoni B., Jeanjean L., Minimax characterization of solutions for a semilinear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Nonlineaire 10 4 (1993), 377-404. (1993) Zbl0828.35013MR1246458
- Buffoni B., Jeanjean L., Stuart C.A., Existence of a non-trivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 1 (1993), 175-186. (1993) MR1145940
- Chabrowski J., Yang Jianfu, Existence theorems for the Schrödinger equation involving a critical Sobolev exponent, Z. Angew. Math. Phys. 49 (1998), 276-293. (1998) Zbl0903.35021MR1629187
- Cao D.M., Zhou H.S., Multiple positive solutions of nonhomogeneous semilinear elliptic equations on , Proc. Royal Soc. Edinburgh 126A (1996), 443-463. (1996) MR1386873
- Ekeland I., On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. (1974) Zbl0286.49015MR0346619
- de Figueiredo D.G., On superlinear elliptic problems with nonlinearities interacting only with higher eigenvalues, Rocky Mount. J. Math. 18 2 (1988), 287-303. (1988) Zbl0673.35027MR0951939
- de Figueiredo D.G., Yang Jianfu, Critical superlinear Ambrosetti-Prodi Problem, Topol. Methods Nonlinear Anal. 14 (1999), 59-80. (1999) MR1758880
- Jeanjean L., Two positive solutions for a class nonhomogeneous elliptic equations, Differential Integral Equations 10 (1997), 609-624. (1997) MR1741765
- Liu Xiaochun, Existence theorem of concave and convex effects for nonlinear Schrödinger equations, J. Nanchang Univ. Nat. Sci. 22 1 (1998), 31-38. (1998)
- Pankov A.A., Pflüger K., On a semilinear Schrödinger equation with periodic potential, Nonlinear Anal. TMA 33 (1998), 593-609. (1998) MR1635911
- Rabinowitz P., Minimax methods in critical point theory with applications to differential equations, AMS Conf. Ser. Math. 65 (1986). Zbl0609.58002MR0845785
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.