Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 4, page 377-404
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBuffoni, Boris, and Jeanjean, Louis. "Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness." Annales de l'I.H.P. Analyse non linéaire 10.4 (1993): 377-404. <http://eudml.org/doc/78308>.
@article{Buffoni1993,
author = {Buffoni, Boris, Jeanjean, Louis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bifurcation from any boundary point of the spectrum},
language = {eng},
number = {4},
pages = {377-404},
publisher = {Gauthier-Villars},
title = {Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness},
url = {http://eudml.org/doc/78308},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Buffoni, Boris
AU - Jeanjean, Louis
TI - Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 4
SP - 377
EP - 404
LA - eng
KW - bifurcation from any boundary point of the spectrum
UR - http://eudml.org/doc/78308
ER -
References
top- [1] S. Alama and Y.Y. Li, Existence of Solutions for Semilinear Elliptic Equations with Indefinite Linear Part, J. Diff. Eqns., 96, 1992, pp. 89-115. Zbl0766.35009MR1153310
- [2] J.P. Aubin, L'analyse nonlinéaire et ses motivations économiques, Masson, Paris, 1984. Zbl0551.90001MR754997
- [3] V. Benci, Critical Point Theory for Strongly Indefinite Functionals with Symmetries, Trans. A.M.S., 274, 1982. Zbl0504.58014MR675067
- [4] V. Benci and P.H. Rabinowitz, Critical Point Theorems for Indefinite Functions, Invent. Math., Vol. 52, 1979, pp. 241-273. Zbl0465.49006MR537061
- [5] B. Buffoni and L. Jeanjean, Bifurcation from the Spectrum Towards Regular Value, to appear in J. Reine Angew. Math. Zbl0795.47041MR1244967
- [6] S.N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer, Berlin, 1982. Zbl0487.47039MR660633
- [7] H.P. Heinz, Lacunary Bifurcation for Operator Equations and Nonlinear Boundary Value Problems on RN, Proceedings of the Royal Society of Edinburgh, 118 A, 237-270, 1991. Zbl0765.47017MR1121666
- [8] H.P. Heinz, Existence and Gap-Bifurcation of Multiple Solutions to Certain Nonlinear Eigenvalue Problems, preprint. Zbl0793.47060MR1240897
- [9] H.P. Heinz, T. Kupper and C.A. Stuart, Existence and Bifurcation of Solutions for Nonlinear Perturbations of the Periodic Schrödinger Equation, J. Diff. Eqns., Vol. 100, 2, 1992, pp. 341-354. Zbl0767.35006MR1194814
- [10] H.P. Heinz and C.A. Stuart, Solvability of Nonlinear Equation in Spectral Gaps of the Linearisation, Nonlinear Analysis - TMA, Vol. 19, 2, 1992, pp. 145-165. Zbl0777.47033MR1174464
- [11] T. Kupper and C.A. Stuart, Bifurcation Into Gaps in the Essential Spectrum, J. Reine Angew. Math., Vol. 409, 1990, pp. 1-34. Zbl0709.34507MR1061517
- [12] T. Kupper and C.A. Stuart, Necessary and Sufficient Conditions for Gap-Bifurcation, Nonlinear Analysis, Vol. 18, 1992, pp. 893-903. Zbl0797.47037MR1162481
- [13] T. Kupper and C.A. Stuart, Gap-Bifurcation for Nonlinear Perturbations of Hill's Equation, J. Reine Angew. Math., Vol. 410, 1990, pp. 23-52. Zbl0704.34012MR1068798
- [14] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Part 1, Ann. Inst. H. Poincaré, Anal. non lin., Vol. 1, 1984, pp. 109-145. Zbl0541.49009MR778970
- [15] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Part 2, Ann. Inst. H. Poincaré, Anal. non lin., Vol. 1, 1984, pp. 223-283. Zbl0704.49004MR778974
- [16] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS conference lectures, A.M.S., Providence, 1986. Zbl0609.58002MR845785
- [17] H.J. Ruppen, The Existence of Infinitely Many Bifurcation Branches, Proc. Roy. Soc. Edinbourgh, Vol. 101, 1985, pp. 307-320. Zbl0603.35006MR824229
- [18] H. Ruppen, Nodal Characterisation of Bifurcating Branches in Lp (R) for a Semilinear Equation, J. Diff. Eqns., Vol. 99, 1, 1992, pp. 153-203. Zbl0767.34057MR1178401
- [19] C.A. Stuart, Bifurcation from the Continuous Spectrum in L2-Theory of Elliptic Equations on RN, in Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli, 1981. Zbl0614.47047
- [20] C.A. Stuart, Bifurcation for Dirichlet Problems Without Eigenvalues, Proc. London Math. Meth. Soc., Vol. 45, 1982, pp. 169-192. Zbl0505.35010MR662670
- [21] C.A. Stuart, Bifurcation in Lp (RN) for a Semilinear Elliptic Equation, Proc. London Math. Meth. Soc., (3), Vol. 57, 1988, pp. 511-541. Zbl0673.35005MR960098
- [22] C.A. Stuart, Bifurcation from the Essential Spectrum for Some Non-Compact Nonlinearities, Math. in the applied sciences, Vol. 11, 1989, pp. 525-542. Zbl0678.58013MR1001101
- [23] X.P. Zhu and H.S. Zhou, Bifurcation from the Essential Spectrum of Superlinear Elliptic Equations, Appl. Anal., Vol. 28, 1988, pp. 51-66. Zbl0621.35009MR960586
Citations in EuDML Documents
top- Xiaochun Liu, Jianfu Yang, Multiple solutions of a Schrödinger type semilinear equation
- Maria J. Esteban, Eric Séré, Les équations de Dirac-Fock
- I. Catto, C. Le Bris, P.-L. Lions, On some periodic Hartree-type models for crystals
- Jacques Giacomoni, Louis Jeanjean, A variational approach to bifurcation into spectral gaps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.