Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness

Boris Buffoni; Louis Jeanjean

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 4, page 377-404
  • ISSN: 0294-1449

How to cite

top

Buffoni, Boris, and Jeanjean, Louis. "Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness." Annales de l'I.H.P. Analyse non linéaire 10.4 (1993): 377-404. <http://eudml.org/doc/78308>.

@article{Buffoni1993,
author = {Buffoni, Boris, Jeanjean, Louis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bifurcation from any boundary point of the spectrum},
language = {eng},
number = {4},
pages = {377-404},
publisher = {Gauthier-Villars},
title = {Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness},
url = {http://eudml.org/doc/78308},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Buffoni, Boris
AU - Jeanjean, Louis
TI - Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 4
SP - 377
EP - 404
LA - eng
KW - bifurcation from any boundary point of the spectrum
UR - http://eudml.org/doc/78308
ER -

References

top
  1. [1] S. Alama and Y.Y. Li, Existence of Solutions for Semilinear Elliptic Equations with Indefinite Linear Part, J. Diff. Eqns., 96, 1992, pp. 89-115. Zbl0766.35009MR1153310
  2. [2] J.P. Aubin, L'analyse nonlinéaire et ses motivations économiques, Masson, Paris, 1984. Zbl0551.90001MR754997
  3. [3] V. Benci, Critical Point Theory for Strongly Indefinite Functionals with Symmetries, Trans. A.M.S., 274, 1982. Zbl0504.58014MR675067
  4. [4] V. Benci and P.H. Rabinowitz, Critical Point Theorems for Indefinite Functions, Invent. Math., Vol. 52, 1979, pp. 241-273. Zbl0465.49006MR537061
  5. [5] B. Buffoni and L. Jeanjean, Bifurcation from the Spectrum Towards Regular Value, to appear in J. Reine Angew. Math. Zbl0795.47041MR1244967
  6. [6] S.N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer, Berlin, 1982. Zbl0487.47039MR660633
  7. [7] H.P. Heinz, Lacunary Bifurcation for Operator Equations and Nonlinear Boundary Value Problems on RN, Proceedings of the Royal Society of Edinburgh, 118 A, 237-270, 1991. Zbl0765.47017MR1121666
  8. [8] H.P. Heinz, Existence and Gap-Bifurcation of Multiple Solutions to Certain Nonlinear Eigenvalue Problems, preprint. Zbl0793.47060MR1240897
  9. [9] H.P. Heinz, T. Kupper and C.A. Stuart, Existence and Bifurcation of Solutions for Nonlinear Perturbations of the Periodic Schrödinger Equation, J. Diff. Eqns., Vol. 100, 2, 1992, pp. 341-354. Zbl0767.35006MR1194814
  10. [10] H.P. Heinz and C.A. Stuart, Solvability of Nonlinear Equation in Spectral Gaps of the Linearisation, Nonlinear Analysis - TMA, Vol. 19, 2, 1992, pp. 145-165. Zbl0777.47033MR1174464
  11. [11] T. Kupper and C.A. Stuart, Bifurcation Into Gaps in the Essential Spectrum, J. Reine Angew. Math., Vol. 409, 1990, pp. 1-34. Zbl0709.34507MR1061517
  12. [12] T. Kupper and C.A. Stuart, Necessary and Sufficient Conditions for Gap-Bifurcation, Nonlinear Analysis, Vol. 18, 1992, pp. 893-903. Zbl0797.47037MR1162481
  13. [13] T. Kupper and C.A. Stuart, Gap-Bifurcation for Nonlinear Perturbations of Hill's Equation, J. Reine Angew. Math., Vol. 410, 1990, pp. 23-52. Zbl0704.34012MR1068798
  14. [14] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Part 1, Ann. Inst. H. Poincaré, Anal. non lin., Vol. 1, 1984, pp. 109-145. Zbl0541.49009MR778970
  15. [15] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Part 2, Ann. Inst. H. Poincaré, Anal. non lin., Vol. 1, 1984, pp. 223-283. Zbl0704.49004MR778974
  16. [16] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS conference lectures, A.M.S., Providence, 1986. Zbl0609.58002MR845785
  17. [17] H.J. Ruppen, The Existence of Infinitely Many Bifurcation Branches, Proc. Roy. Soc. Edinbourgh, Vol. 101, 1985, pp. 307-320. Zbl0603.35006MR824229
  18. [18] H. Ruppen, Nodal Characterisation of Bifurcating Branches in Lp (R) for a Semilinear Equation, J. Diff. Eqns., Vol. 99, 1, 1992, pp. 153-203. Zbl0767.34057MR1178401
  19. [19] C.A. Stuart, Bifurcation from the Continuous Spectrum in L2-Theory of Elliptic Equations on RN, in Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli, 1981. Zbl0614.47047
  20. [20] C.A. Stuart, Bifurcation for Dirichlet Problems Without Eigenvalues, Proc. London Math. Meth. Soc., Vol. 45, 1982, pp. 169-192. Zbl0505.35010MR662670
  21. [21] C.A. Stuart, Bifurcation in Lp (RN) for a Semilinear Elliptic Equation, Proc. London Math. Meth. Soc., (3), Vol. 57, 1988, pp. 511-541. Zbl0673.35005MR960098
  22. [22] C.A. Stuart, Bifurcation from the Essential Spectrum for Some Non-Compact Nonlinearities, Math. in the applied sciences, Vol. 11, 1989, pp. 525-542. Zbl0678.58013MR1001101
  23. [23] X.P. Zhu and H.S. Zhou, Bifurcation from the Essential Spectrum of Superlinear Elliptic Equations, Appl. Anal., Vol. 28, 1988, pp. 51-66. Zbl0621.35009MR960586

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.