Three-and-more set theorems
Pavol Hell; Jaroslav Nešetřil; André Raspaud; Eric Sopena
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 793-801
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHell, Pavol, et al. "Three-and-more set theorems." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 793-801. <http://eudml.org/doc/248638>.
@article{Hell2000,
abstract = {In this paper we generalize classical 3-set theorem related to stable partitions of arbitrary mappings due to Erdős-de Bruijn, Katětov and Kasteleyn. We consider a structural generalization of this result to partitions preserving sets of inequalities and characterize all finite sets of such inequalities which can be preserved by a “small” coloring. These results are also related to graph homomorphisms and (oriented) colorings.},
author = {Hell, Pavol, Nešetřil, Jaroslav, Raspaud, André, Sopena, Eric},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {relation; compactness; combinatorics of mappings; relation; homomorphism},
language = {eng},
number = {4},
pages = {793-801},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Three-and-more set theorems},
url = {http://eudml.org/doc/248638},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Hell, Pavol
AU - Nešetřil, Jaroslav
AU - Raspaud, André
AU - Sopena, Eric
TI - Three-and-more set theorems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 793
EP - 801
AB - In this paper we generalize classical 3-set theorem related to stable partitions of arbitrary mappings due to Erdős-de Bruijn, Katětov and Kasteleyn. We consider a structural generalization of this result to partitions preserving sets of inequalities and characterize all finite sets of such inequalities which can be preserved by a “small” coloring. These results are also related to graph homomorphisms and (oriented) colorings.
LA - eng
KW - relation; compactness; combinatorics of mappings; relation; homomorphism
UR - http://eudml.org/doc/248638
ER -
References
top- Abramovich Y.A., Arenson E.L., Kitover A., Banach C(K)-modules and operations preserving disjointness, Berkeley Report no. MSRI 05808-91 (1991). MR1202880
- de Bruijn N.G., Erdös P., A colour problem for infinite graphs and a problem in the theory of relations, Indagationes Math. 13 (1951), 371-373. (1951) MR0046630
- Dreyer P., Malon Ch., Nešetřil J., Universal H-colorable graphs without a given configuration, KAM-DIMATIA Series 99-428, Discrete Math., to appear. MR1905979
- Frolík Z., Fixed points of maps of , Bull. Amer. Math. Soc. 74 (1968), 187-191. (1968) MR0222847
- Frolík Z., Fixed points of maps of extremally disconnected spaces and complete Boolean algebras, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 269-275. (1968) MR0233343
- Häggkvist R., Hell P., Universality of -mote graphs, Europ. J. Combinatorics 14 (1993), 21-27. (1993) MR1197472
- Hell P., Nešetřil J., Oriented A-mote graphs, to appear.
- Katětov M., A theorem on mappings, Comment. Math. Univ. Carolinae 8.3 (1967), 431-433. (1967) MR0229228
- Krawczyk A., Stepraǹs J., Continuous colorings of closed graphs, Topology Appl. 51 (1993), 13-26. (1993) MR1229497
- Nešetřil J., Sopena E., Vignal L., T-preserving homomorphisms of oriented graphs, Comment. Math. Univ. Carolinae 38.1 (1997), 125-136. (1997) MR1455476
- Pérennes S., A proof of Jean de Rumeur's conjecture, Discrete Appl. Math. 74 3 295-299 (1997). (1997) Zbl0869.05035MR1444947
- Rumeur J., Communications dans les réseaux de processeurs, Masson, 1994.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.