Centered-Lindelöfness versus star-Lindelöfness

Maddalena Bonanzinga; Mikhail Valerʹevich Matveev

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 1, page 111-122
  • ISSN: 0010-2628

Abstract

top
We discuss various generalizations of the class of Lindelöf spaces and study the difference between two of these generalizations, the classes of star-Lindelöf and centered-Lindelöf spaces.

How to cite

top

Bonanzinga, Maddalena, and Matveev, Mikhail Valerʹevich. "Centered-Lindelöfness versus star-Lindelöfness." Commentationes Mathematicae Universitatis Carolinae 41.1 (2000): 111-122. <http://eudml.org/doc/248641>.

@article{Bonanzinga2000,
abstract = {We discuss various generalizations of the class of Lindelöf spaces and study the difference between two of these generalizations, the classes of star-Lindelöf and centered-Lindelöf spaces.},
author = {Bonanzinga, Maddalena, Matveev, Mikhail Valerʹevich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {star-Lindelöf; centered-Lindelöf; linked-Lindelöf; CCC-Lindelöf; metaLin- delöf; paraLindelöf; weakly separable; CCC; $C_p(X)$; star-Lindelöf; centered-Lindelöf; linked-Lindelöf; CCC-Lindelöf; metaLindelöf; paraLindelöf; weakly separable; CCC; },
language = {eng},
number = {1},
pages = {111-122},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Centered-Lindelöfness versus star-Lindelöfness},
url = {http://eudml.org/doc/248641},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Bonanzinga, Maddalena
AU - Matveev, Mikhail Valerʹevich
TI - Centered-Lindelöfness versus star-Lindelöfness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 1
SP - 111
EP - 122
AB - We discuss various generalizations of the class of Lindelöf spaces and study the difference between two of these generalizations, the classes of star-Lindelöf and centered-Lindelöf spaces.
LA - eng
KW - star-Lindelöf; centered-Lindelöf; linked-Lindelöf; CCC-Lindelöf; metaLin- delöf; paraLindelöf; weakly separable; CCC; $C_p(X)$; star-Lindelöf; centered-Lindelöf; linked-Lindelöf; CCC-Lindelöf; metaLindelöf; paraLindelöf; weakly separable; CCC;
UR - http://eudml.org/doc/248641
ER -

References

top
  1. Arhangel'skii A.V., Topological function spaces, Moskov. Gos. Univ. Publ., Moscow, 1989 (in Russian); English translation in: Mathematics and its Applications (Soviet Series) 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR1144519
  2. Arhangel'skii A.V., C p -theory, Recent Progress in General Topology, M. Hušek and J. van Mill Eds., Elsevier Sci. Pub. B.V., 1992, pp.1-56. Zbl0932.54015
  3. Arhangel'skii A.V., Ponomarev V.I., Foundations of General Topology: Problems and Exercises, Moscow, Nauka Publ., 1974 (in Russian); English translation in: Mathematics and its applications, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 13 (1984). MR0785749
  4. Asanov M.O., On cardinal invariants of the spaces of all continuous functions (in Russian), Contemporary Topology and Set Theory, Izhevsk 2 (1979), 8-12. (1979) 
  5. Berner A.J., Spaces with dense conditionally compact subsets, Proc. Amer. Mat. Soc. 81 (1979), 137-142. (1979) MR0589156
  6. Beshimov R.B., Weakly separable spaces and mappings, Thesis, Moscow State University, 1994. 
  7. Beshimov R.B., Some properties of weakly separable spaces Uzbek. Mat. Zh., 1 (1994), 7-11. (1994) MR1350283
  8. Bonanzinga M., Star-Lindelöf and absolutely star-Lindelöf spaces, Questions Answers Gen. Topology 16 (1998), 79-104. (1998) Zbl0931.54019MR1642032
  9. van Douwen E.K., Density of compactifications, Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.97-110. Zbl0379.54006MR0442887
  10. van Douwen E.K., The Pixley-Roy topology on spaces of subsets, Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.111-134. Zbl0372.54006MR0440489
  11. van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J., Star covering properties, Topology Appl. 39 (1991), 71-103. (1991) Zbl0743.54007MR1103993
  12. Dow A., Junnila H., Pelant J., Weak covering properties of weak topologies, Proc. London Math. Soc. (3) 75 (1997), 2 349-368. (1997) Zbl0886.54014MR1455860
  13. Engelking R., General Topology, Warszawa, 1977. Zbl0684.54001MR0500780
  14. Fleischman W.M., A new extension of countable compactness, Fund. Math. 67 (1970), 1-9. (1970) Zbl0194.54601MR0264608
  15. Ikenaga S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Mem. of Numazu College of Tech. 18 (1983), 105-108. (1983) 
  16. Ikenaga S., Topological concept between Lindelöf and Pseudo-Lindelöf, Res. Rep. of Nara Nat. College of Technology 26 (1990), 103-108. (1990) 
  17. Levy R., McDowell R.H., Dense subsets of β X , Proc. Amer. Mat. Soc. 507 (1975), 426-429. (1975) Zbl0313.54025MR0370506
  18. Matveev M.V., Pseudocompact and related spaces, Thesis, Moscow State University, 1985. 
  19. Matveev M.V., A survey on star covering properties Topology Atlas, preprint No 330 (1998) http://www.unipissing.ca/topology/v/a/a/a/19.htm, . 
  20. Matveev M.V., Uspenskii V.V., On star-compact spaces with a G δ -diagonal, Zbornik Radova Filosofskogo Fakulteta v Nisu, Ser. Mat. 6:2 (1992), 281-290. (1992) Zbl0911.54020MR1244780
  21. Miller A.W., Special subsets of the real line, Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.201-233. Zbl0588.54035MR0776624
  22. Pixley C., Roy P., Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference, Auburn Univ., Auburn, Alabama, 1969, pp.75-85. Zbl0259.54022MR0397671
  23. Pol R., A theorem on weak topology on C ( X ) for compact scattered X , Fund. Math. 106 2 (1980), 135-140. (1980) MR0580591
  24. Przymusiński T., Tall F.D., The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math 85 (1974), 291-297. (1974) MR0367934
  25. Reznichenko E.A., A pseudocompact space in which only the sets of full cardinality are not closed and not discrete, Vestnik MGU, Ser. I: Matem., Mekh., 1989, No. 6, pp.69-70 (in Russian); English translation in: Moscow Univ. Math. Bull. 44 (1989) 70-71. MR1065983
  26. Scott B.M., Pseudocompact, metacompact spaces are compact, Topology Proc. 4 (1979), 577-587. (1979) MR0598295
  27. Tall F.D., Normality versus collectionwise normality, Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.685-732. Zbl0552.54011MR0776634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.