# Monotone iterative technique and connectedness of the set of solutions

Mathematica Bohemica (2000)

- Volume: 125, Issue: 3, page 323-329
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topRudolf, Boris. "Monotone iterative technique and connectedness of the set of solutions." Mathematica Bohemica 125.3 (2000): 323-329. <http://eudml.org/doc/248664>.

@article{Rudolf2000,

abstract = {The paper deals with the properties of a monotone operator defined on a subset of an ordered Banach space. The structure of the set of fixed points between the minimal and maximal ones is described.},

author = {Rudolf, Boris},

journal = {Mathematica Bohemica},

keywords = {order preserving operator; ordered Banach space; structure of the set of fixed points; fixed points between the minimal and maximal ones; connectedness of the set of solutions; order preserving operator; ordered Banach space; structure of the set of fixed points; fixed points between the minimal and maximal ones; connectedness of the set of solutions},

language = {eng},

number = {3},

pages = {323-329},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Monotone iterative technique and connectedness of the set of solutions},

url = {http://eudml.org/doc/248664},

volume = {125},

year = {2000},

}

TY - JOUR

AU - Rudolf, Boris

TI - Monotone iterative technique and connectedness of the set of solutions

JO - Mathematica Bohemica

PY - 2000

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 125

IS - 3

SP - 323

EP - 329

AB - The paper deals with the properties of a monotone operator defined on a subset of an ordered Banach space. The structure of the set of fixed points between the minimal and maximal ones is described.

LA - eng

KW - order preserving operator; ordered Banach space; structure of the set of fixed points; fixed points between the minimal and maximal ones; connectedness of the set of solutions; order preserving operator; ordered Banach space; structure of the set of fixed points; fixed points between the minimal and maximal ones; connectedness of the set of solutions

UR - http://eudml.org/doc/248664

ER -

## References

top- Amman H., 10.1137/1018114, SIAM Rev. 18 (1976), 620-709. (1976) MR0415432DOI10.1137/1018114
- Deimling K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. (1985) Zbl0559.47040MR0787404
- Fang Shuhong, 10.1016/0362-546X(95)00075-7, Nonlinear Anal. 27 (1996), 793-796. (1996) MR1402165DOI10.1016/0362-546X(95)00075-7
- Gera M., Nieto J. J., Šeda V., 10.1016/0096-3003(92)90019-W, Appl. Math. Comput. 48 (1992), 71-82. (1992) MR1147728DOI10.1016/0096-3003(92)90019-W
- Hess P., Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Works in Math. Ser., Longman, 1991. (1991) Zbl0731.35050MR1100011
- Krasnoseľskij M. A., Lusnikov A. V., Fixed points with special properties, Dokl. Akad. Nauk 345 (1995), 303-305. (In Russian.) (1995) MR1372832
- Ladde G. S., Lakshmikantham V., Vatsala A. S., Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1986. (1986) MR0855240
- Lakshmikantham V., Leela S., 10.1016/0362-546X(84)90050-6, Nonlinear Anal. 8 (1984), 281-287. (1984) Zbl0532.34029MR0738013DOI10.1016/0362-546X(84)90050-6
- Rudolf B., Kubáček Z., 10.1016/0022-247X(90)90341-C, J. Math. Anal. Appl. 146 (1990), 203-206. (1990) Zbl0713.34015MR1041210DOI10.1016/0022-247X(90)90341-C
- Šeda V., 10.1016/S0362-546X(97)00033-3, Nonlinear Anal. 30 (1997), 1607-1616. (1997) MR1490083DOI10.1016/S0362-546X(97)00033-3

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.