Ordered prime spectra of bounded D R l -monoids

Jiří Rachůnek

Mathematica Bohemica (2000)

  • Volume: 125, Issue: 4, page 505-509
  • ISSN: 0862-7959

Abstract

top
Ordered prime spectra of Boolean products of bounded D R l -monoids are described by means of their decompositions to the prime spectra of the components.

How to cite

top

Rachůnek, Jiří. "Ordered prime spectra of bounded $DRl$-monoids." Mathematica Bohemica 125.4 (2000): 505-509. <http://eudml.org/doc/248670>.

@article{Rachůnek2000,
abstract = {Ordered prime spectra of Boolean products of bounded $DRl$-monoids are described by means of their decompositions to the prime spectra of the components.},
author = {Rachůnek, Jiří},
journal = {Mathematica Bohemica},
keywords = {$DRl$-monoid; prime ideal; spectrum; $MV$-algebra; -monoid; prime ideal; spectrum; MV-algebra},
language = {eng},
number = {4},
pages = {505-509},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ordered prime spectra of bounded $DRl$-monoids},
url = {http://eudml.org/doc/248670},
volume = {125},
year = {2000},
}

TY - JOUR
AU - Rachůnek, Jiří
TI - Ordered prime spectra of bounded $DRl$-monoids
JO - Mathematica Bohemica
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 125
IS - 4
SP - 505
EP - 509
AB - Ordered prime spectra of Boolean products of bounded $DRl$-monoids are described by means of their decompositions to the prime spectra of the components.
LA - eng
KW - $DRl$-monoid; prime ideal; spectrum; $MV$-algebra; -monoid; prime ideal; spectrum; MV-algebra
UR - http://eudml.org/doc/248670
ER -

References

top
  1. S. Burris H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, Berlin, 1977. (1977) MR0648287
  2. C. C. Chang, 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  3. C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
  4. R. Cignoli A. Torrens, 10.1006/jabr.1996.0278, J. Algebra 184 (1996), 604-614. (1996) MR1409232DOI10.1006/jabr.1996.0278
  5. T. Kovář, A general theory of dually residuated lattice ordered monoids, Thesis, Palacký Univ. Olomouc, 1996. (1996) 
  6. D. Mundici, 10.1016/0022-1236(86)90015-7, J. Funct. Analys. 65 (1986), 15-63. (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
  7. J. Rachůnek, Spectra of autometrized lattice algebras, Math. Bohem. 123 (1998), 87-94. (1998) MR1618727
  8. J. Rachůnek, 10.1023/A:1022801907138, Czechoslovak Math. J. 48 (1998), 365-372. (1998) MR1624268DOI10.1023/A:1022801907138
  9. J. Rachůnek, MV-algebras are categorically equivalent to a class of D R l 1 ( i ) -semigroups, Math. Bohem. 123 (1998), 437-441. (1998) MR1667115
  10. J. Rachůnek, Polars and annihilators in representable DRl-monoids and MV-algebras, (submitted). 
  11. K. L. N. Swamy, 10.1007/BF01360284, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284
  12. K. L. N. Swamy, 10.1007/BF01364335, Math. Ann. 160 (1965), 64-71. (1965) MR0191851DOI10.1007/BF01364335
  13. K. L. N.Swamy, 10.1007/BF01361218, Math. Ann. 167 (1966), 71-74. (1966) MR0200364DOI10.1007/BF01361218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.