MV-algebras are categorically equivalent to a class of -semigroups
Mathematica Bohemica (1998)
- Volume: 123, Issue: 4, page 437-441
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRachůnek, Jiří. "MV-algebras are categorically equivalent to a class of $\mathcal {DR}l_{1(i)}$-semigroups." Mathematica Bohemica 123.4 (1998): 437-441. <http://eudml.org/doc/248317>.
@article{Rachůnek1998,
abstract = {In the paper it is proved that the category of -algebras is equivalent to the category of bounded -semigroups satisfying the identity $1-(1-x)=x$. Consequently, by a result of D. Mundici, both categories are equivalent to the category of bounded commutative -algebras.},
author = {Rachůnek, Jiří},
journal = {Mathematica Bohemica},
keywords = {categorical equivalence; bounded -algebra; -algebra; -semigroup; MV-algebra; -semigroup; categorical equivalence; bounded BCK-algebra},
language = {eng},
number = {4},
pages = {437-441},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {MV-algebras are categorically equivalent to a class of $\mathcal \{DR\}l_\{1(i)\}$-semigroups},
url = {http://eudml.org/doc/248317},
volume = {123},
year = {1998},
}
TY - JOUR
AU - Rachůnek, Jiří
TI - MV-algebras are categorically equivalent to a class of $\mathcal {DR}l_{1(i)}$-semigroups
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 4
SP - 437
EP - 441
AB - In the paper it is proved that the category of -algebras is equivalent to the category of bounded -semigroups satisfying the identity $1-(1-x)=x$. Consequently, by a result of D. Mundici, both categories are equivalent to the category of bounded commutative -algebras.
LA - eng
KW - categorical equivalence; bounded -algebra; -algebra; -semigroup; MV-algebra; -semigroup; categorical equivalence; bounded BCK-algebra
UR - http://eudml.org/doc/248317
ER -
References
top- C. C. Chang, 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
- C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
- R. Cignoli, Free lattice-ordered abelian groups and varieties of MV-algebras, Proc. IX. Latin. Amer. Symp. Math. Logic, Part 1, Not. Log. Mat. 38 (1993), 113-118. (1993) Zbl0827.06012MR1332526
- K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica. 23 (1978), 1-26. (1978) MR0500283
- T. Kovář, A general theory of dually residuated lattice ordered monoids, Thesis, Palacky Univ. Olomouc, 1996. (1996)
- T. Kovář, Two remarks on dually residuated lattice ordered semigroups, Math. Slovaca. To appear. MR1804468
- F. Lacava, Some properties of L-algebras and existencially closed L-algebras, Boll. Un. Mat. Ital., A(5) 16 (1979), 360-366. (In Italian.) (1979) MR0541775
- D. Mundici, 10.1016/0022-1236(86)90015-7, J. Funct. Analys. 65 (1986), 15-63. (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
- D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31 (1986), 889-894. (1986) Zbl0633.03066MR0870978
- J. Rachůnek, 10.1023/A:1022801907138, Czechoslovak Math. J. 123 (1998), 365-372. (1998) MR1624268DOI10.1023/A:1022801907138
- K. L. N. Swamy, 10.1007/BF01360284, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284
- S. Tanaka, On -commutative algebras, Math. Sem. Notes Kobe 3 (1975), 59-64. (1975) Zbl0324.02053MR0419222
- T. Traczyk, On the variety of bounded commutative BCK-algebras, Math. Japonica 24 (1979), 283-292. (1979) Zbl0422.03038MR0550212
- H. Yutani, Quasi-commutative BCK-algebras and congruence relations, Math. Sem. Notes Kobe 5 (1977), 469-480. (1977) Zbl0375.02053MR0498112
Citations in EuDML Documents
top- Jiří Rachůnek, Filip Švrček, MV-algebras with additive closure operators
- Magdalena Harlenderová, Jiří Rachůnek, Modal operators on MV-algebras
- Jiří Rachůnek, Ordered prime spectra of bounded -monoids
- Jiří Rachůnek, Filip Švrček, Interior and closure operators on bounded commutative residuated l-monoids
- Jan Kühr, Representable dually residuated lattice-ordered monoids
- Jiří Rachůnek, Dana Šalounová, Classes of filters in generalizations of commutative fuzzy structures
- Jan Kühr, Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids
- Jan Kühr, Finite-valued dually residuated lattice-ordered monoids
- Jiří Rachůnek, Dana Šalounová, Modal operators on bounded commutative residuated -monoids
- Milan Jasem, On lattice-ordered monoids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.