# Computing all monogeneous mixed dihedral quartic extensions of a quadratic field

• Volume: 13, Issue: 1, page 137-142
• ISSN: 1246-7405

top

## Abstract

top
Let $M$ be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields $K$ with mixed signature having power integral bases and containing $M$ as a subfield. We also determine all generators of power integral bases in $K$. Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for $M=ℚ\left(\sqrt{2}\right),ℚ\left(\sqrt{3}\right),ℚ\left(\sqrt{5}\right).$

## How to cite

top

Gaál, István, and Nyul, Gábor. "Computing all monogeneous mixed dihedral quartic extensions of a quadratic field." Journal de théorie des nombres de Bordeaux 13.1 (2001): 137-142. <http://eudml.org/doc/248697>.

@article{Gaál2001,
abstract = {Let $M$ be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields $K$ with mixed signature having power integral bases and containing $M$ as a subfield. We also determine all generators of power integral bases in $K$. Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for $M = \mathbb \{Q\}(\sqrt\{2\}), \mathbb \{Q\}(\sqrt\{3\}), \mathbb \{Q\}(\sqrt\{5\}).$},
author = {Gaál, István, Nyul, Gábor},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {power integral basis; dihedral quartic field; quadratic subfield},
language = {eng},
number = {1},
pages = {137-142},
publisher = {Université Bordeaux I},
title = {Computing all monogeneous mixed dihedral quartic extensions of a quadratic field},
url = {http://eudml.org/doc/248697},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Gaál, István
AU - Nyul, Gábor
TI - Computing all monogeneous mixed dihedral quartic extensions of a quadratic field
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 137
EP - 142
AB - Let $M$ be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields $K$ with mixed signature having power integral bases and containing $M$ as a subfield. We also determine all generators of power integral bases in $K$. Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for $M = \mathbb {Q}(\sqrt{2}), \mathbb {Q}(\sqrt{3}), \mathbb {Q}(\sqrt{5}).$
LA - eng
KW - power integral basis; dihedral quartic field; quadratic subfield
UR - http://eudml.org/doc/248697
ER -

## References

top
1. [1] Y. Bilu, G. Hanrot, Solving Thue equations of high degree. J. Number Theory60 (1996), 373-392. Zbl0867.11017MR1412969
2. [2] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, K. Wildanger, KANT V4. J. Symbolic Comp.24 (1997), 267-283. Zbl0886.11070MR1484479
3. [3] I. Gaál, A. Pethö, M. Pohst, On the resolution of index form equations in biquadratic number fields, I. J. Number Theory38 (1991), 18-34. Zbl0726.11022MR1105669
4. [4] I. Gaál, A. Pethö, M. Pohst, On the resolution of index form equations in biquadratic number fields, II. J. Number Theory38 (1991), 35-51. Zbl0726.11023
5. [5] I. Gaál, A. Pethö, M. Pohst, On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case. J. Number Theory53 (1995), 100-114. Zbl0853.11026MR1344834
6. [6] I. Gaál, A. Pethö, M. Pohst, On the resolution of index form equations in quartic number fields. J. Symbolic Computation16 (1993), 563-584. Zbl0808.11023MR1279534
7. [7] I. Gaál, A. Pethö, M. Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms - with an application to index form equations in quartic number fields. J. Number Theory57 (1996), 90-104. Zbl0853.11023MR1378574
8. [8] I. Gaál, A. Pethö, M. Pohst, On the resolution of index form equations in dihedral number fields. J. Experimental Math.3 (1994), 245-254. Zbl0823.11074MR1329372
9. [9] A.C. Kable, Power integral bases in dihedral quartic fields. J. Number Theory76 (1999), 120-129. Zbl0934.11051MR1688180
10. [10] L.C. Kappe, B. Warren, An elementary test for the Galois group of a quartic polynomial. Amer. Math. Monthly96 (1989), 133-137. Zbl0702.11075MR992075

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.