# Prime divisors of the Lagarias sequence

• Volume: 13, Issue: 1, page 241-251
• ISSN: 1246-7405

top

## Abstract

top
We solve a 1985 challenge problem posed by Lagarias [5] by determining, under GRH, the density of the set of prime numbers that occur as divisor of some term of the sequence ${\left\{{x}_{n}\right\}}_{n=1}^{\infty }$ defined by the linear recurrence ${x}_{n+1}={x}_{n}+{x}_{n-1}$ and the initial values ${x}_{0}=3$ and ${x}_{1}=1$. This is the first example of a ænon-torsionÆ second order recurrent sequence with irreducible recurrence relation for which we can determine the associated density of prime divisors.

## How to cite

top

Moree, Pieter, and Stevenhagen, Peter. "Prime divisors of the Lagarias sequence." Journal de théorie des nombres de Bordeaux 13.1 (2001): 241-251. <http://eudml.org/doc/248699>.

@article{Moree2001,
abstract = {We solve a 1985 challenge problem posed by Lagarias [5] by determining, under GRH, the density of the set of prime numbers that occur as divisor of some term of the sequence $\left\lbrace x_n\right\rbrace ^\{\infty \}_\{n=1\}$ defined by the linear recurrence $x_\{n +1\} = x_n + x_\{n-1\}$ and the initial values $x_0 = 3$ and $x_1 = 1$. This is the first example of a ænon-torsionÆ second order recurrent sequence with irreducible recurrence relation for which we can determine the associated density of prime divisors.},
author = {Moree, Pieter, Stevenhagen, Peter},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Chebotarev density theorem; generalized Riemann hypothesis},
language = {eng},
number = {1},
pages = {241-251},
publisher = {Université Bordeaux I},
title = {Prime divisors of the Lagarias sequence},
url = {http://eudml.org/doc/248699},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Moree, Pieter
AU - Stevenhagen, Peter
TI - Prime divisors of the Lagarias sequence
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 241
EP - 251
AB - We solve a 1985 challenge problem posed by Lagarias [5] by determining, under GRH, the density of the set of prime numbers that occur as divisor of some term of the sequence $\left\lbrace x_n\right\rbrace ^{\infty }_{n=1}$ defined by the linear recurrence $x_{n +1} = x_n + x_{n-1}$ and the initial values $x_0 = 3$ and $x_1 = 1$. This is the first example of a ænon-torsionÆ second order recurrent sequence with irreducible recurrence relation for which we can determine the associated density of prime divisors.
LA - eng
KW - Chebotarev density theorem; generalized Riemann hypothesis
UR - http://eudml.org/doc/248699
ER -

## References

top
1. [1] C. Ballot, Density of prime divisors of linear recurrent sequences. Mem. of the AMS551, 1995. Zbl0827.11006
2. [2] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene rationale Zahl a ≠ 0 von durch eine vorgegebene Primzahl l ≠ 2 teilbarer bzw. unteilbarer Ordnung mod p ist. Math. Ann.162 (1965), 74-76. Zbl0135.10203MR186653
3. [3] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod p ist. Math. Ann.166 (1966), 19-23. Zbl0139.27501MR205975
4. [4] C. Hooley, On Artin's conjecture. J. Reine Angew. Math.225 (1967), 209-220. Zbl0221.10048MR207630
5. [5] J.C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3. Pacific J. Math.118 (1985), 449-461; Errata Ibid.162 (1994), 393-397. Zbl0569.10003MR789184
6. [6] S. Lang, Algebra, 3rd edition. Addison-Wesley, 1993. Zbl0848.13001MR197234
7. [7] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math.42 (1977), 201-224. Zbl0362.12012MR480413
8. [8] P. Moree, P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arith.82 (1997), 403-410. Zbl0913.11048MR1483692
9. [9] P. Moree, P. Stevenhagen, A two variable Artin conjecture. J. Number Theory85 (2000), 291-304. Zbl0966.11042MR1802718
10. [10] P.J. Stephens, Prime divisors of second order linear recurrences. J. Number Theory8 (1976), 313-332. Zbl0334.10018MR417081
11. [11] P. Stevenhagen, Prime densities for second order torsion sequences. preprint (2000).

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.