Prime divisors of Lucas sequences
Pieter Moree; Peter Stevenhagen
Acta Arithmetica (1997)
- Volume: 82, Issue: 4, page 403-410
- ISSN: 0065-1036
Access Full Article
topHow to cite
topPieter Moree, and Peter Stevenhagen. "Prime divisors of Lucas sequences." Acta Arithmetica 82.4 (1997): 403-410. <http://eudml.org/doc/207101>.
@article{PieterMoree1997,
author = {Pieter Moree, Peter Stevenhagen},
journal = {Acta Arithmetica},
keywords = {Lucas sequence; Chebotarev density theorem; prime divisors; real quadratic field; fundamental unit},
language = {eng},
number = {4},
pages = {403-410},
title = {Prime divisors of Lucas sequences},
url = {http://eudml.org/doc/207101},
volume = {82},
year = {1997},
}
TY - JOUR
AU - Pieter Moree
AU - Peter Stevenhagen
TI - Prime divisors of Lucas sequences
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 4
SP - 403
EP - 410
LA - eng
KW - Lucas sequence; Chebotarev density theorem; prime divisors; real quadratic field; fundamental unit
UR - http://eudml.org/doc/207101
ER -
References
top- [1] C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 551 (1995).
- [2] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a≠0 von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. 166 (1966), 19-23. Zbl0139.27501
- [3] J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461; Errata: Pacific J. Math. 162 (1994), 393-397. Zbl0569.10003
- [4] P. Moree, On the prime density of Lucas sequences, J. Théor. Nombres Bordeaux 8 (1996), 449-459. Zbl0873.11058
- [5] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1995. Zbl0856.11001
- [6] P. Stevenhagen, Prime densities for second order torsion sequences, preprint.
Citations in EuDML Documents
top- Stefan Kühnlein, Some families of finite groups and their rings of invariants
- Christian Ballot, Counting monic irreducible polynomials in for which order of is odd
- Christian Ballot, Strong arithmetic properties of the integral solutions of X³ + DY³ + D²Z³ - 3DXYZ = 1, where D = M³ ± 1, M ∈ ℤ*
- Pieter Moree, Peter Stevenhagen, Prime divisors of the Lagarias sequence
- Hans Roskam, Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.