Good reduction of elliptic curves over imaginary quadratic fields

Masanari Kida

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 201-209
  • ISSN: 1246-7405

Abstract

top
We prove that the j -invariant of an elliptic curve defined over an imaginary quadratic number field having good reduction everywhere satisfies certain Diophantine equations under some hypothesis on the arithmetic of the quadratic field. By solving the Diophantine equations explicitly in the rings of quadratic integers, we show the non-existence of such elliptic curve for certain imaginary quadratic fields. This extends the results due to Setzer and Stroeker.

How to cite

top

Kida, Masanari. "Good reduction of elliptic curves over imaginary quadratic fields." Journal de théorie des nombres de Bordeaux 13.1 (2001): 201-209. <http://eudml.org/doc/248704>.

@article{Kida2001,
abstract = {We prove that the $j$-invariant of an elliptic curve defined over an imaginary quadratic number field having good reduction everywhere satisfies certain Diophantine equations under some hypothesis on the arithmetic of the quadratic field. By solving the Diophantine equations explicitly in the rings of quadratic integers, we show the non-existence of such elliptic curve for certain imaginary quadratic fields. This extends the results due to Setzer and Stroeker.},
author = {Kida, Masanari},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {201-209},
publisher = {Université Bordeaux I},
title = {Good reduction of elliptic curves over imaginary quadratic fields},
url = {http://eudml.org/doc/248704},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Kida, Masanari
TI - Good reduction of elliptic curves over imaginary quadratic fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 201
EP - 209
AB - We prove that the $j$-invariant of an elliptic curve defined over an imaginary quadratic number field having good reduction everywhere satisfies certain Diophantine equations under some hypothesis on the arithmetic of the quadratic field. By solving the Diophantine equations explicitly in the rings of quadratic integers, we show the non-existence of such elliptic curve for certain imaginary quadratic fields. This extends the results due to Setzer and Stroeker.
LA - eng
UR - http://eudml.org/doc/248704
ER -

References

top
  1. [1] H. Cohen, A course in computational algebraic number theory. Springer-Verlag, Berlin, 1993. Zbl0786.11071MR1228206
  2. [2] S. Comalada, E. Nart, Modular invariant and good reduction of elliptic curves. Math. Ann.293 (1992), no. 2, 331-342. Zbl0734.14013MR1166124
  3. [3] J.E. Cremona, P. Serf, Computing the rank of elliptic curves over real quadratic number fields of class number 1. Math. Comp.68 (1999), no. 227, 1187-1200. Zbl0927.11034MR1627777
  4. [4] M. Daberkow, C. Fieker, J. Kluners, M. Pohst, K. Roegner, M. Schörnig, K. Wildanger, KANT V4. J. Symbolic Comput. 24 (1997), no. 3-4, 267-283, Computational algebra and number theory (London, 1993). Zbl0886.11070MR1484479
  5. [5] S. David, Minorations de hauteurs sur les variétés abéliennes. Bull. Soc. Math. France121 (1993), no. 4, 509-544. Zbl0803.11031MR1254751
  6. [6] C. Hollinger, P. Serf, SIMATH-a computer algebra system. Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, pp. 331-342. Zbl0726.68051MR1151876
  7. [7] M. Kida, Computing elliptic curves having good reduction everywhere over quadratic fields. Preprint (1998). MR1874989
  8. [8] M. Kida, Non-existence of elliptic curves having good reduction everywhere over certain quadratic fields. Preprint (1999). MR1831499
  9. [9] M. Kida, Reduction of elliptic curves over certain real quadratic fields. Math. Comp.68 (1999), no. 228, 1679-1685. Zbl0930.11037MR1654021
  10. [10] M. Kida, TECC manual version 2.2. The University of Electro-Communications, November 1999. 
  11. [11] B. Setzer, Elliptic curves over complex quadratic fields. Pacific J. Math.74 (1978), no. 1, 235-250. Zbl0394.14018MR491710
  12. [12] J.H. Silverman, Computing heights on elliptic curves. Math. Comp.51 (1988), no. 183, 339-358. Zbl0656.14016MR942161
  13. [13] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves. Springer-Verlag, New York, 1994. Zbl0911.14015MR1312368
  14. [14] N.P. Smart, N.M. Stephens, Integral points on elliptic curves over number fields. Math. Proc. Cambridge Philos. Soc.122 (1997), no. 1, 9-16. Zbl0881.11054MR1443583
  15. [15] N.P. Smart, The algorithmic resolution of Diophantine equations. Cambridge University Press, Cambridge, 1998. Zbl0907.11001MR1689189
  16. [16] R.J. Stroeker, Reduction of elliptic curves over imaginary quadratic number fields. Pacific J. Math.108 (1983), no. 2, 451-463. Zbl0491.14024MR713747
  17. [17] L.C. Washington, Class numbers of the simplest cubic fields. Math. Comp.48 (1987), no. 177, 371-384. Zbl0613.12002MR866122
  18. [18] H.G. Zimmer, Basic algorithms for elliptic curves. Number theory (Eger, 1996), de Gruyter, Berlin, 1998, pp. 541-595. Zbl1066.11514MR1628868

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.