Good reduction of elliptic curves over imaginary quadratic fields
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 201-209
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKida, Masanari. "Good reduction of elliptic curves over imaginary quadratic fields." Journal de théorie des nombres de Bordeaux 13.1 (2001): 201-209. <http://eudml.org/doc/248704>.
@article{Kida2001,
abstract = {We prove that the $j$-invariant of an elliptic curve defined over an imaginary quadratic number field having good reduction everywhere satisfies certain Diophantine equations under some hypothesis on the arithmetic of the quadratic field. By solving the Diophantine equations explicitly in the rings of quadratic integers, we show the non-existence of such elliptic curve for certain imaginary quadratic fields. This extends the results due to Setzer and Stroeker.},
author = {Kida, Masanari},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {201-209},
publisher = {Université Bordeaux I},
title = {Good reduction of elliptic curves over imaginary quadratic fields},
url = {http://eudml.org/doc/248704},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Kida, Masanari
TI - Good reduction of elliptic curves over imaginary quadratic fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 201
EP - 209
AB - We prove that the $j$-invariant of an elliptic curve defined over an imaginary quadratic number field having good reduction everywhere satisfies certain Diophantine equations under some hypothesis on the arithmetic of the quadratic field. By solving the Diophantine equations explicitly in the rings of quadratic integers, we show the non-existence of such elliptic curve for certain imaginary quadratic fields. This extends the results due to Setzer and Stroeker.
LA - eng
UR - http://eudml.org/doc/248704
ER -
References
top- [1] H. Cohen, A course in computational algebraic number theory. Springer-Verlag, Berlin, 1993. Zbl0786.11071MR1228206
- [2] S. Comalada, E. Nart, Modular invariant and good reduction of elliptic curves. Math. Ann.293 (1992), no. 2, 331-342. Zbl0734.14013MR1166124
- [3] J.E. Cremona, P. Serf, Computing the rank of elliptic curves over real quadratic number fields of class number 1. Math. Comp.68 (1999), no. 227, 1187-1200. Zbl0927.11034MR1627777
- [4] M. Daberkow, C. Fieker, J. Kluners, M. Pohst, K. Roegner, M. Schörnig, K. Wildanger, KANT V4. J. Symbolic Comput. 24 (1997), no. 3-4, 267-283, Computational algebra and number theory (London, 1993). Zbl0886.11070MR1484479
- [5] S. David, Minorations de hauteurs sur les variétés abéliennes. Bull. Soc. Math. France121 (1993), no. 4, 509-544. Zbl0803.11031MR1254751
- [6] C. Hollinger, P. Serf, SIMATH-a computer algebra system. Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, pp. 331-342. Zbl0726.68051MR1151876
- [7] M. Kida, Computing elliptic curves having good reduction everywhere over quadratic fields. Preprint (1998). MR1874989
- [8] M. Kida, Non-existence of elliptic curves having good reduction everywhere over certain quadratic fields. Preprint (1999). MR1831499
- [9] M. Kida, Reduction of elliptic curves over certain real quadratic fields. Math. Comp.68 (1999), no. 228, 1679-1685. Zbl0930.11037MR1654021
- [10] M. Kida, TECC manual version 2.2. The University of Electro-Communications, November 1999.
- [11] B. Setzer, Elliptic curves over complex quadratic fields. Pacific J. Math.74 (1978), no. 1, 235-250. Zbl0394.14018MR491710
- [12] J.H. Silverman, Computing heights on elliptic curves. Math. Comp.51 (1988), no. 183, 339-358. Zbl0656.14016MR942161
- [13] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves. Springer-Verlag, New York, 1994. Zbl0911.14015MR1312368
- [14] N.P. Smart, N.M. Stephens, Integral points on elliptic curves over number fields. Math. Proc. Cambridge Philos. Soc.122 (1997), no. 1, 9-16. Zbl0881.11054MR1443583
- [15] N.P. Smart, The algorithmic resolution of Diophantine equations. Cambridge University Press, Cambridge, 1998. Zbl0907.11001MR1689189
- [16] R.J. Stroeker, Reduction of elliptic curves over imaginary quadratic number fields. Pacific J. Math.108 (1983), no. 2, 451-463. Zbl0491.14024MR713747
- [17] L.C. Washington, Class numbers of the simplest cubic fields. Math. Comp.48 (1987), no. 177, 371-384. Zbl0613.12002MR866122
- [18] H.G. Zimmer, Basic algorithms for elliptic curves. Number theory (Eger, 1996), de Gruyter, Berlin, 1998, pp. 541-595. Zbl1066.11514MR1628868
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.