Arakelov computations in genus curves
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 157-165
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGuàrdia, Jordi. "Arakelov computations in genus $3$ curves." Journal de théorie des nombres de Bordeaux 13.1 (2001): 157-165. <http://eudml.org/doc/248720>.
@article{Guàrdia2001,
abstract = {Arakelov invariants of arithmetic surfaces are well known for genus 1 and 2 ([4], [2]). In this note, we study the modular height and the Arakelov self-intersection for a family of curves of genus 3 with many automorphisms:\begin\{equation*\} C\_n: Y^4 = X^4 - (4n - 2)X^2 Z^2 + Z^4.\end\{equation*\}Arakelov calculus involves both analytic and arithmetic computations. We express the periods of the curve $C_n$ in terms of elliptic integrals. The substitutions used in these integrals provide a splitting of the jacobian of $C_n$ as a product of three elliptic curves. Using the corresponding isogeny, we determine the stable model of the arithmetic surface given by $C_n$. Once we have the periods and the stable model of $C_n$, we can study the modular height and the self-intersection of the canonical sheaf. We can give a good estimate for the modular height, which reflects its logarithmic behaviour. We provide a lower bound for the self-intersection, which shows that it can be arbitrarily large. We present here all our calculations on the curves $C_n$, almost without proofs. Details can be found in [5].},
author = {Guàrdia, Jordi},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Arakelov theory; genus 3 curves; modular height; self-intersection of the dualizing sheaf},
language = {eng},
number = {1},
pages = {157-165},
publisher = {Université Bordeaux I},
title = {Arakelov computations in genus $3$ curves},
url = {http://eudml.org/doc/248720},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Guàrdia, Jordi
TI - Arakelov computations in genus $3$ curves
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 157
EP - 165
AB - Arakelov invariants of arithmetic surfaces are well known for genus 1 and 2 ([4], [2]). In this note, we study the modular height and the Arakelov self-intersection for a family of curves of genus 3 with many automorphisms:\begin{equation*} C_n: Y^4 = X^4 - (4n - 2)X^2 Z^2 + Z^4.\end{equation*}Arakelov calculus involves both analytic and arithmetic computations. We express the periods of the curve $C_n$ in terms of elliptic integrals. The substitutions used in these integrals provide a splitting of the jacobian of $C_n$ as a product of three elliptic curves. Using the corresponding isogeny, we determine the stable model of the arithmetic surface given by $C_n$. Once we have the periods and the stable model of $C_n$, we can study the modular height and the self-intersection of the canonical sheaf. We can give a good estimate for the modular height, which reflects its logarithmic behaviour. We provide a lower bound for the self-intersection, which shows that it can be arbitrarily large. We present here all our calculations on the curves $C_n$, almost without proofs. Details can be found in [5].
LA - eng
KW - Arakelov theory; genus 3 curves; modular height; self-intersection of the dualizing sheaf
UR - http://eudml.org/doc/248720
ER -
References
top- [1] A. Abbes, E. Ullmo, Auto-intersection du dualisant relatif des courbes modulaires X0(N). J. reine angew. Math.484 (1997), 1-70. Zbl0934.14016MR1437298
- [2] J.-B. Bost, Fonctions de Green-Anakelov, fonctions théta et courbes de genre 2. C.R. Acad. Sci. Paris Série I305 (1987), 643-646. Zbl0638.14016MR917587
- [3] Bost J.-B., J.-F. Mestre, L. Moret-Bailly, Sur le calcul explicite des "classes de Chern" des surfaces arithmétiques de genre 2. Astérisque183 (1990), 69-105. Zbl0731.14017MR1065156
- [4] G. Faltings, Calculus on arithmetic surfaces. Ann. of Math.119 (1984), 387-424. Zbl0559.14005MR740897
- [5] J. Guàrdia, Geometria aritmética en una famlia de corbes de genere 3. Thesis, Universitat de Barcelona, 1998.
- [6] A. Moriwaki, Lower bound of self-intersection of dualizing sheaves on arithmetic surfaces with reducible fibres. Compositio Mathematica105 (1997), 125-140. Zbl0917.14012MR1386111
- [7] M. Raynaud, Hauteurs et isogénies. Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, exp. VII. Astérisque127 (1985), 199-234. MR801923
- [8] E. Ullmo, Positivité et discrétion des points algébriques des courbes. Annals of Math.147 (1998), 167-179. Zbl0934.14013MR1609514
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.