An explicit algebraic family of genus-one curves violating the Hasse principle

Bjorn Poonen

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 263-274
  • ISSN: 1246-7405

Abstract

top
We prove that for any t 𝐐 , the curve 5 x 3 + 9 y 3 + 10 z 3 + 12 t 2 + 82 t 2 + 22 3 ( x + y + z ) 3 = 0 in 𝐏 2 is a genus 1 curve violating the Hasse principle. An explicit Weierstrass model for its jacobian E t is given. The Shafarevich-Tate group of each E t contains a subgroup isomorphic to 𝐙 / 3 × 𝐙 / 3 .

How to cite

top

Poonen, Bjorn. "An explicit algebraic family of genus-one curves violating the Hasse principle." Journal de théorie des nombres de Bordeaux 13.1 (2001): 263-274. <http://eudml.org/doc/248722>.

@article{Poonen2001,
abstract = {We prove that for any $t \in \mathbf \{Q\}$, the curve\begin\{equation*\} 5x^3 + 9y^3+ 10z^3 + 12 \left(\frac\{t^2 + 82\}\{t^2 + 22\}\right)^3 (x + y + z)^3 = 0 \end\{equation*\}in $\mathbf \{P\}^2$ is a genus $1$ curve violating the Hasse principle. An explicit Weierstrass model for its jacobian $E_t$ is given. The Shafarevich-Tate group of each $E_t$ contains a subgroup isomorphic to $\mathbf \{Z\}/3 \times \mathbf \{Z\}/3$.},
author = {Poonen, Bjorn},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {263-274},
publisher = {Université Bordeaux I},
title = {An explicit algebraic family of genus-one curves violating the Hasse principle},
url = {http://eudml.org/doc/248722},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Poonen, Bjorn
TI - An explicit algebraic family of genus-one curves violating the Hasse principle
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 263
EP - 274
AB - We prove that for any $t \in \mathbf {Q}$, the curve\begin{equation*} 5x^3 + 9y^3+ 10z^3 + 12 \left(\frac{t^2 + 82}{t^2 + 22}\right)^3 (x + y + z)^3 = 0 \end{equation*}in $\mathbf {P}^2$ is a genus $1$ curve violating the Hasse principle. An explicit Weierstrass model for its jacobian $E_t$ is given. The Shafarevich-Tate group of each $E_t$ contains a subgroup isomorphic to $\mathbf {Z}/3 \times \mathbf {Z}/3$.
LA - eng
UR - http://eudml.org/doc/248722
ER -

References

top
  1. [AP] S.Y. An, S.Y. Kim, D. Marshall, S. Marshall, W. McCallum, A. Perlis, Jacobians of genus one curves. Preprint, 1999. Zbl1066.14035
  2. [CG] J.W.S. Cassels, M.J.T. Guy, On the Hasse principle for cubic surfaces. Mathematika13 (1966), 111-120. Zbl0151.03405MR211966
  3. [CKS] J.-L. Colliot-Thélène, D. Kanevsky, J.-J. Sansuc, Arithmétique des surfaces cubiques diagonales, pp. 1-108 in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Math. 1290, Springer, Berlin, 1987. Zbl0639.14018MR927558
  4. [CP] J.-L. Colliot-Thélène, B. Poonen, Algebraic families of nonzero elements of Shafarevich-Tate groups. J. Amer. Math. Soc.13 (2000), 83-99. Zbl0951.11022MR1697093
  5. [Lin] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thesis, University of Uppsala, 1940. Zbl0025.24802MR22563JFM66.0131.04
  6. [Ma] Yu.I. Manin, Cubic forms. Translated from the Russian by M. Hazewinkel, Second edition, North-Holland, Amsterdam, 1974. Zbl0277.14014MR833513
  7. [Mi] J. Milne, Étale cohomology. Princeton Univ. Press, Princeton, N.J., 1980. Zbl0433.14012MR559531
  8. [O'N] C. O'Neil, Jacobians of curves of genus one. Thesis, Harvard University, 1999. 
  9. [Ra] M. Raynaud, Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes. Séminaire Bourbaki, Exposé 286 (1965). Zbl0204.54301
  10. [Re] H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. Reine Angew. Math.184 (1942), 12-18. Zbl0026.29701MR9381JFM68.0070.01
  11. [RVT] F. Rodriguez-Villegas, J. Tate, On the Jacobian of plane cubics. in preparation, 1999. 
  12. [Se] E. Selmer, The Diophantine equation ax3 + by3 + cz3 = 0. Acta Math.85 (1951), 203-362; 92 (1954), 191-197. Zbl0042.26905MR41871
  13. [Si] J. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York-Berlin, 1986. Zbl0585.14026MR817210
  14. [St] B. Sturmfels, Introduction to resultants. Applications of computational algebraic geometry (San Diego, CA, 1997), 25-39, Proc. Sympos. Appl. Math.53, Amer. Math. Soc., Providence, RI, 1998. Zbl0916.13008MR1602347
  15. [SD] H.P.F. Swinnerton-Dyer, Two special cubic surfaces. Mathematika9 (1962), 54-56. Zbl0103.38302MR139989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.