An explicit algebraic family of genus-one curves violating the Hasse principle
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 263-274
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPoonen, Bjorn. "An explicit algebraic family of genus-one curves violating the Hasse principle." Journal de théorie des nombres de Bordeaux 13.1 (2001): 263-274. <http://eudml.org/doc/248722>.
@article{Poonen2001,
abstract = {We prove that for any $t \in \mathbf \{Q\}$, the curve\begin\{equation*\} 5x^3 + 9y^3+ 10z^3 + 12 \left(\frac\{t^2 + 82\}\{t^2 + 22\}\right)^3 (x + y + z)^3 = 0 \end\{equation*\}in $\mathbf \{P\}^2$ is a genus $1$ curve violating the Hasse principle. An explicit Weierstrass model for its jacobian $E_t$ is given. The Shafarevich-Tate group of each $E_t$ contains a subgroup isomorphic to $\mathbf \{Z\}/3 \times \mathbf \{Z\}/3$.},
author = {Poonen, Bjorn},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {263-274},
publisher = {Université Bordeaux I},
title = {An explicit algebraic family of genus-one curves violating the Hasse principle},
url = {http://eudml.org/doc/248722},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Poonen, Bjorn
TI - An explicit algebraic family of genus-one curves violating the Hasse principle
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 263
EP - 274
AB - We prove that for any $t \in \mathbf {Q}$, the curve\begin{equation*} 5x^3 + 9y^3+ 10z^3 + 12 \left(\frac{t^2 + 82}{t^2 + 22}\right)^3 (x + y + z)^3 = 0 \end{equation*}in $\mathbf {P}^2$ is a genus $1$ curve violating the Hasse principle. An explicit Weierstrass model for its jacobian $E_t$ is given. The Shafarevich-Tate group of each $E_t$ contains a subgroup isomorphic to $\mathbf {Z}/3 \times \mathbf {Z}/3$.
LA - eng
UR - http://eudml.org/doc/248722
ER -
References
top- [AP] S.Y. An, S.Y. Kim, D. Marshall, S. Marshall, W. McCallum, A. Perlis, Jacobians of genus one curves. Preprint, 1999. Zbl1066.14035
- [CG] J.W.S. Cassels, M.J.T. Guy, On the Hasse principle for cubic surfaces. Mathematika13 (1966), 111-120. Zbl0151.03405MR211966
- [CKS] J.-L. Colliot-Thélène, D. Kanevsky, J.-J. Sansuc, Arithmétique des surfaces cubiques diagonales, pp. 1-108 in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Math. 1290, Springer, Berlin, 1987. Zbl0639.14018MR927558
- [CP] J.-L. Colliot-Thélène, B. Poonen, Algebraic families of nonzero elements of Shafarevich-Tate groups. J. Amer. Math. Soc.13 (2000), 83-99. Zbl0951.11022MR1697093
- [Lin] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thesis, University of Uppsala, 1940. Zbl0025.24802MR22563JFM66.0131.04
- [Ma] Yu.I. Manin, Cubic forms. Translated from the Russian by M. Hazewinkel, Second edition, North-Holland, Amsterdam, 1974. Zbl0277.14014MR833513
- [Mi] J. Milne, Étale cohomology. Princeton Univ. Press, Princeton, N.J., 1980. Zbl0433.14012MR559531
- [O'N] C. O'Neil, Jacobians of curves of genus one. Thesis, Harvard University, 1999.
- [Ra] M. Raynaud, Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes. Séminaire Bourbaki, Exposé 286 (1965). Zbl0204.54301
- [Re] H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. Reine Angew. Math.184 (1942), 12-18. Zbl0026.29701MR9381JFM68.0070.01
- [RVT] F. Rodriguez-Villegas, J. Tate, On the Jacobian of plane cubics. in preparation, 1999.
- [Se] E. Selmer, The Diophantine equation ax3 + by3 + cz3 = 0. Acta Math.85 (1951), 203-362; 92 (1954), 191-197. Zbl0042.26905MR41871
- [Si] J. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York-Berlin, 1986. Zbl0585.14026MR817210
- [St] B. Sturmfels, Introduction to resultants. Applications of computational algebraic geometry (San Diego, CA, 1997), 25-39, Proc. Sympos. Appl. Math.53, Amer. Math. Soc., Providence, RI, 1998. Zbl0916.13008MR1602347
- [SD] H.P.F. Swinnerton-Dyer, Two special cubic surfaces. Mathematika9 (1962), 54-56. Zbl0103.38302MR139989
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.