Coupled fixed points of mixed monotone operators on probabilistic Banach spaces

Ismat Beg; Abdul Latif; Rashid Ali; Akbar Azam

Archivum Mathematicum (2001)

  • Volume: 037, Issue: 1, page 1-8
  • ISSN: 0044-8753

Abstract

top
The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.

How to cite

top

Beg, Ismat, et al. "Coupled fixed points of mixed monotone operators on probabilistic Banach spaces." Archivum Mathematicum 037.1 (2001): 1-8. <http://eudml.org/doc/248736>.

@article{Beg2001,
abstract = {The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.},
author = {Beg, Ismat, Latif, Abdul, Ali, Rashid, Azam, Akbar},
journal = {Archivum Mathematicum},
keywords = {probabilistic Banach space; monotone operator; fixed point; monotone operators; probabilistic space; coupled fixed points},
language = {eng},
number = {1},
pages = {1-8},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Coupled fixed points of mixed monotone operators on probabilistic Banach spaces},
url = {http://eudml.org/doc/248736},
volume = {037},
year = {2001},
}

TY - JOUR
AU - Beg, Ismat
AU - Latif, Abdul
AU - Ali, Rashid
AU - Azam, Akbar
TI - Coupled fixed points of mixed monotone operators on probabilistic Banach spaces
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 1
SP - 1
EP - 8
AB - The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.
LA - eng
KW - probabilistic Banach space; monotone operator; fixed point; monotone operators; probabilistic space; coupled fixed points
UR - http://eudml.org/doc/248736
ER -

References

top
  1. Beg I., Rehman S., Shahzad N., Fixed points of generalized contraction mappings on probabilistic metric spaces, Pakistan J. Statist. 8(2) (1992), 35–52. (1992) Zbl0770.54040MR1225059
  2. Bharucha-Reid A. T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641–657. (1976) Zbl0339.60061MR0413273
  3. Cain G. L., Jr., Kasriel R. H., Fixed and periodic points of local contraction mappings on probabilistic metric spaces, Math. Systems Theory 9 (1970), 289–297. (1970) MR0458397
  4. Chang S. S., Basic theory and applications of probabilistic metric spaces (I), App. Math. Mech. 9(2) (1988), 123–133. (1988) MR0943878
  5. Chang S. S., Cho Y. J., Kang S. M., Probabilistic Metric Spaces and Nonlinear Operator Theory, Sichuan University Press, Chendgu, China, 1994. (1994) 
  6. Chang S. S., Ma Y. H., Coupled fixed points for mixed monotone condensing operators and existence theorem of the solutions for a class of functional equation arising in dynamic programming, J. Math. Anal. Appl. 160 (1991), 468–479. (1991) MR1126131
  7. Egbert R. J., Products and quotients of probabilistic metric spaces, Pacific J. Math. 24 (1968), 437–455. (1968) Zbl0175.46601MR0226690
  8. Hadzic O., Some theorems on the fixed points in probabilistic metric and random normed spaces, Boll. Un. Mat. Ital. B(6), 1-B (1982), 381–391. (1982) Zbl0488.47028MR0654942
  9. Hutson V., Pym J. S., Applications of Functional Analysis and Operator Theory, Academic Press, London, 1980. (1980) Zbl0426.46009MR0569354
  10. Istratescu V. I., Fixed Point Theory, D. Reidel Publishing Company, Dordrecht, 1988. (1988) MR0620639
  11. Menger K., Statistical metric, Proc. Natl. Acad. Sci. USA, 28 (1942), 535–537. (1942) MR0007576
  12. Schweizer B., Sklar A., Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334. (1960) Zbl0096.33203MR0115153
  13. Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics 5 1983. (1983) Zbl0546.60010MR0790314
  14. Sherwood H., Complete probabilistic metric spaces, Z. Wahrsch. Verw. Gebiete 20 (1971), 117–128. (1971) Zbl0212.19304MR0317290
  15. Stojakovic M., Fixed point theorems in probabilistic metric spaces, Kobe J. Math. 2(1) (1985), 1–9. (1985) Zbl0589.54059MR0811797
  16. Stojakovic M., Common fixed point theorems in complete metric and probabilistic metric spaces, Bull. Austral. Math. Soc. 36 (1987), 73–88. (1987) Zbl0601.54056MR0897423
  17. Sun Y., A fixed point theorem for monotone operators with applications, J. Math. Anal. Appl. 156 (1991), 240–252. (1991) MR1102609
  18. Serstnev A. N., On the notion of random normed spaces, Dokl. Akad. Nauk 149 (1963), 280–283. (1963) MR0154320
  19. Tan N. X., Generalized probabilistic metric spaces and fixed point theorems, Math. Nachr. 129 (1986), 205–218. (1986) Zbl0603.54049MR0864635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.