On projectable objects on fibred manifolds

Vasile Cruceanu; Marcela Popescu; Paul Popescu

Archivum Mathematicum (2001)

  • Volume: 037, Issue: 3, page 185-206
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to study the projectable and N -projectable objects (tensors, derivations and linear connections) on the total space E of a fibred manifold ξ , where N is a normalization of ξ .

How to cite

top

Cruceanu, Vasile, Popescu, Marcela, and Popescu, Paul. "On projectable objects on fibred manifolds." Archivum Mathematicum 037.3 (2001): 185-206. <http://eudml.org/doc/248738>.

@article{Cruceanu2001,
abstract = {The aim of this paper is to study the projectable and $N$-projectable objects (tensors, derivations and linear connections) on the total space $E$ of a fibred manifold $\xi $, where $N$ is a normalization of $\xi $.},
author = {Cruceanu, Vasile, Popescu, Marcela, Popescu, Paul},
journal = {Archivum Mathematicum},
keywords = {fibred manifold; projectable objects; $d$-tensor fields; fibred manifold; projectable objects; d-tensor fields},
language = {eng},
number = {3},
pages = {185-206},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On projectable objects on fibred manifolds},
url = {http://eudml.org/doc/248738},
volume = {037},
year = {2001},
}

TY - JOUR
AU - Cruceanu, Vasile
AU - Popescu, Marcela
AU - Popescu, Paul
TI - On projectable objects on fibred manifolds
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 3
SP - 185
EP - 206
AB - The aim of this paper is to study the projectable and $N$-projectable objects (tensors, derivations and linear connections) on the total space $E$ of a fibred manifold $\xi $, where $N$ is a normalization of $\xi $.
LA - eng
KW - fibred manifold; projectable objects; $d$-tensor fields; fibred manifold; projectable objects; d-tensor fields
UR - http://eudml.org/doc/248738
ER -

References

top
  1. Ako M., Fibred spaces with almost complex structure, Kodai Math. Sem. Rep., 29 (1972), 482–505. (1972) MR0353192
  2. Bejancu A., Finsler Geometry and Applications, Math. and its appl., Chichester, 1988. (1988) 
  3. Cruceanu V., Sur la structure presque produit assiciée à une connection sur un espace fibré, An. St. Univ. “Al.I.Cuza" Iassy, XV (1969), 159–167. (1969) MR0256294
  4. Cruceanu V.,, Connections compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J., 24 (1974), 126–142. (1974) MR0353356
  5. Cruceanu V., A New definition for certaines lifts on a Vector Bundle, An. St. Univ. ”Al.I.Cuza” Iassy, 42 (1996), 59–72. (1996) MR1458921
  6. Gray A., Pseudo-Riemannian almost products manifolds and submersions, J.Math.and Mech. 16 (1967), 715–738. (1967) MR0205184
  7. Grifone J., Structures presque-tangente et connexions, I, II, Ann. Inst. Fourier, 22 (1972), 287–334, 291–338. (1972) MR0336636
  8. Ishihara S., Konishi M., Differential Geometry of Fibred Spaces, Publ. Study Group of Geometry, 8 (1973), 1–200. (1973) Zbl0337.53001MR0405275
  9. Mangiarotti L., Modugno M., Connections and Differential Calculus on Fibred Manifolds, Istituto de Mat. Appl. “G. Sansone", Italy, 1989, 147 pp. (1989) Zbl0841.53023
  10. Miron R., The geometry of Higher-Order Lagrange Spaces, Aplications to Mechanics and Physics. Kluwer Acad. Publ. FTPH (1996). (1996) MR1437362
  11. Miron R., Anastasiei M., The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Acad. Publ. 59 (1994). (1994) Zbl0831.53001MR1281613
  12. Popescu M., Popescu P., d-Linear Connections on Fibred Manifolds, An. Univ. Craiova, Ser. mat., XXIII (1996), 52–59. (1996) Zbl1053.53513MR1654908
  13. Popescu P., On the geometry of R-tangent spaces, Rev. Roum. Math. Pures Appl., 37(1992), 8, 727–733. (1992) MR1188626
  14. Yano K., Ishihara S., Differential Geometry of Fibred Spaces, Kodai Math. Sem. Rep., 19 (1967), 257–288. (1967) Zbl0153.51204MR0224027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.