Lyapunov exponents for stochastic differential equations on semi-simple Lie groups

Paulo R. C. Ruffino; Luiz A. B. San Martin

Archivum Mathematicum (2001)

  • Volume: 037, Issue: 3, page 207-231
  • ISSN: 0044-8753

Abstract

top
With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary B = G / M A N ). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix whose entries are the Lyapunov spectrum. Some Brownian motions on homogeneous spaces are discussed.

How to cite

top

Ruffino, Paulo R. C., and San Martin, Luiz A. B.. "Lyapunov exponents for stochastic differential equations on semi-simple Lie groups." Archivum Mathematicum 037.3 (2001): 207-231. <http://eudml.org/doc/248742>.

@article{Ruffino2001,
abstract = {With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary $B=G/MAN$). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix whose entries are the Lyapunov spectrum. Some Brownian motions on homogeneous spaces are discussed.},
author = {Ruffino, Paulo R. C., San Martin, Luiz A. B.},
journal = {Archivum Mathematicum},
keywords = {Lyapunov exponents; stochastic differential equations; semi-simple Lie groups; flag manifolds; Lyapunov exponents; flag manifolds; stochastic differential equations},
language = {eng},
number = {3},
pages = {207-231},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lyapunov exponents for stochastic differential equations on semi-simple Lie groups},
url = {http://eudml.org/doc/248742},
volume = {037},
year = {2001},
}

TY - JOUR
AU - Ruffino, Paulo R. C.
AU - San Martin, Luiz A. B.
TI - Lyapunov exponents for stochastic differential equations on semi-simple Lie groups
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 3
SP - 207
EP - 231
AB - With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary $B=G/MAN$). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix whose entries are the Lyapunov spectrum. Some Brownian motions on homogeneous spaces are discussed.
LA - eng
KW - Lyapunov exponents; stochastic differential equations; semi-simple Lie groups; flag manifolds; Lyapunov exponents; flag manifolds; stochastic differential equations
UR - http://eudml.org/doc/248742
ER -

References

top
  1. Arnold L., Kliemann W., Oeljeklaus E., Lyapunov exponents of linear stochastic systems, In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 85–128. (1986) Zbl0588.60047MR0850072
  2. Arnold L., Oeljeklaus E., Pardoux E., Almost sure and moment stability for linear Itô equations, In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 129–159. (1986) Zbl0588.60049MR0850074
  3. Arnold L., Imkeller P., Furstenberg-Khasminskii formulas for Lyapunov exponents via antecipative calculus, Stochastics and Stochastics Reports, 54 (1+2) (1995), 127–168. (1995) MR1382281
  4. Baxendale P. H., Asymptotic behavior of stochastic flows of diffeomorphisms: Two case studies, Probab. Theory Related Fields, 73 (1986), 51–85. (1986) MR0849065
  5. Baxendale P. H., The Lyapunov spectrum of a stochastic flow of diffeomorphisms, In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 322–337. (1986) Zbl0592.60047MR0850087
  6. Borel A., Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. 40 (1954), 1147–1151. (1954) MR0077878
  7. Carverhill A. P., Flows of stochastic dynamical systems: Ergodic Theory, Stochastics 14 (1985), 273–317. (1985) Zbl0536.58019MR0805125
  8. Carverhill A. P., A Formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation theorem, Stochastics 14 (1985), 209–226. (1985) Zbl0557.60048MR0800244
  9. Carverhill A. P., A non-random Lyapunov spectrum for non-linear stochastic systems, Stochastics 17 (1986), 253–287. (1986) MR0854649
  10. Carverhill A. P., Elworthy K. D., Lyapunov exponents for a stochastic analogue of the geodesic flow, Trans. Amer. Math. Soc. 295 (1986), 85–105. (1986) Zbl0593.58048MR0831190
  11. Duistermaat J. J., Kolk J. A. C., Varadarajan V., Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Math. 49 (1983), 309–398. (1983) Zbl0524.43008MR0707179
  12. Furstenberg H., Kesten H., Products of random matrices, Ann. Math. Stat. 31 (1960), 457–469. (1960) Zbl0137.35501MR0121828
  13. Guivarc’h Y., Raugi A., Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlinchkeitstheor. Verw. Geb. 69 (1985), 187–242. (1985) Zbl0558.60009MR0779457
  14. Helgason S., Differential geometry, Lie groups and symmetric spaces, Academic Press (1978). (1978) Zbl0451.53038MR0514561
  15. Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland (1981). (1981) Zbl0495.60005MR1011252
  16. Khashminskii R. Z., Stochastic stability of differential equations, Sijthoff and Noordhoff, Alphen (1980). (1980) MR0600653
  17. Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Publishers (1963 and 1969). (1963) Zbl0119.37502MR0152974
  18. Liao M., Stochastic flows on the boundaries of Lie groups, Stochastics Stochastics Rep. 39 (1992), 213–237. (1992) Zbl0754.60016MR1275123
  19. Liao M., Liapunov Exponents of Stochastic Flows, Ann. Probab. 25 (1997), 1241–1256. (1997) MR1457618
  20. Liao M., Invariant diffusion processes in Lie groups and stochastic flows, Proc. of Symposia in Pure Math. 57 (1995), 575–591. (1995) Zbl0839.58065MR1335499
  21. Malliavin M. P., Malliavin P., Factorisations et lois limites de la diffusion horizontale au-dessus d’un espace Riemannien symmetrique, Lecture Notes Math. 404 (1974), 164–217. (1974) MR0359023
  22. Oseledec V. I., A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197–231. (1968) MR0240280
  23. Ruelle D., Ergodic theory of differentiable dynamical systems, I.H.E.S. – Publ. Math. 50, (1979), 275–306. (1979) Zbl0426.58014MR0556581
  24. San Martin L. A. B., Arnold L., A Control problem related to the Lyapunov spectrum of stochastic flows, Mat. Apl. Comput. 5 (1986), 31–64. (1986) Zbl0641.93069MR0885003
  25. Sussmann H., Jurdjevic V., Controllability of nonlinear systems, J. Differential Equations 12 (1972), 95–116. (1972) MR0338882
  26. Taylor J. C., The Iwasawa decomposition and the limiting behavior of Brownian motion on a symmetric space of non-compact type, Contemp. Math. AMS 73 (1988), 303–302. (1988) MR0954647
  27. Warner G., Harmonic Analysis on Semi-simple Lie Groups, Springer-Verlag (1972). (1972) Zbl0265.22021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.