Lyapunov exponents for stochastic differential equations on semi-simple Lie groups
Paulo R. C. Ruffino; Luiz A. B. San Martin
Archivum Mathematicum (2001)
- Volume: 037, Issue: 3, page 207-231
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRuffino, Paulo R. C., and San Martin, Luiz A. B.. "Lyapunov exponents for stochastic differential equations on semi-simple Lie groups." Archivum Mathematicum 037.3 (2001): 207-231. <http://eudml.org/doc/248742>.
@article{Ruffino2001,
abstract = {With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary $B=G/MAN$). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix whose entries are the Lyapunov spectrum. Some Brownian motions on homogeneous spaces are discussed.},
author = {Ruffino, Paulo R. C., San Martin, Luiz A. B.},
journal = {Archivum Mathematicum},
keywords = {Lyapunov exponents; stochastic differential equations; semi-simple Lie groups; flag manifolds; Lyapunov exponents; flag manifolds; stochastic differential equations},
language = {eng},
number = {3},
pages = {207-231},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lyapunov exponents for stochastic differential equations on semi-simple Lie groups},
url = {http://eudml.org/doc/248742},
volume = {037},
year = {2001},
}
TY - JOUR
AU - Ruffino, Paulo R. C.
AU - San Martin, Luiz A. B.
TI - Lyapunov exponents for stochastic differential equations on semi-simple Lie groups
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 3
SP - 207
EP - 231
AB - With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary $B=G/MAN$). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix whose entries are the Lyapunov spectrum. Some Brownian motions on homogeneous spaces are discussed.
LA - eng
KW - Lyapunov exponents; stochastic differential equations; semi-simple Lie groups; flag manifolds; Lyapunov exponents; flag manifolds; stochastic differential equations
UR - http://eudml.org/doc/248742
ER -
References
top- Arnold L., Kliemann W., Oeljeklaus E., Lyapunov exponents of linear stochastic systems, In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 85–128. (1986) Zbl0588.60047MR0850072
- Arnold L., Oeljeklaus E., Pardoux E., Almost sure and moment stability for linear Itô equations, In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 129–159. (1986) Zbl0588.60049MR0850074
- Arnold L., Imkeller P., Furstenberg-Khasminskii formulas for Lyapunov exponents via antecipative calculus, Stochastics and Stochastics Reports, 54 (1+2) (1995), 127–168. (1995) MR1382281
- Baxendale P. H., Asymptotic behavior of stochastic flows of diffeomorphisms: Two case studies, Probab. Theory Related Fields, 73 (1986), 51–85. (1986) MR0849065
- Baxendale P. H., The Lyapunov spectrum of a stochastic flow of diffeomorphisms, In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 322–337. (1986) Zbl0592.60047MR0850087
- Borel A., Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. 40 (1954), 1147–1151. (1954) MR0077878
- Carverhill A. P., Flows of stochastic dynamical systems: Ergodic Theory, Stochastics 14 (1985), 273–317. (1985) Zbl0536.58019MR0805125
- Carverhill A. P., A Formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation theorem, Stochastics 14 (1985), 209–226. (1985) Zbl0557.60048MR0800244
- Carverhill A. P., A non-random Lyapunov spectrum for non-linear stochastic systems, Stochastics 17 (1986), 253–287. (1986) MR0854649
- Carverhill A. P., Elworthy K. D., Lyapunov exponents for a stochastic analogue of the geodesic flow, Trans. Amer. Math. Soc. 295 (1986), 85–105. (1986) Zbl0593.58048MR0831190
- Duistermaat J. J., Kolk J. A. C., Varadarajan V., Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Math. 49 (1983), 309–398. (1983) Zbl0524.43008MR0707179
- Furstenberg H., Kesten H., Products of random matrices, Ann. Math. Stat. 31 (1960), 457–469. (1960) Zbl0137.35501MR0121828
- Guivarc’h Y., Raugi A., Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlinchkeitstheor. Verw. Geb. 69 (1985), 187–242. (1985) Zbl0558.60009MR0779457
- Helgason S., Differential geometry, Lie groups and symmetric spaces, Academic Press (1978). (1978) Zbl0451.53038MR0514561
- Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland (1981). (1981) Zbl0495.60005MR1011252
- Khashminskii R. Z., Stochastic stability of differential equations, Sijthoff and Noordhoff, Alphen (1980). (1980) MR0600653
- Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Publishers (1963 and 1969). (1963) Zbl0119.37502MR0152974
- Liao M., Stochastic flows on the boundaries of Lie groups, Stochastics Stochastics Rep. 39 (1992), 213–237. (1992) Zbl0754.60016MR1275123
- Liao M., Liapunov Exponents of Stochastic Flows, Ann. Probab. 25 (1997), 1241–1256. (1997) MR1457618
- Liao M., Invariant diffusion processes in Lie groups and stochastic flows, Proc. of Symposia in Pure Math. 57 (1995), 575–591. (1995) Zbl0839.58065MR1335499
- Malliavin M. P., Malliavin P., Factorisations et lois limites de la diffusion horizontale au-dessus d’un espace Riemannien symmetrique, Lecture Notes Math. 404 (1974), 164–217. (1974) MR0359023
- Oseledec V. I., A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197–231. (1968) MR0240280
- Ruelle D., Ergodic theory of differentiable dynamical systems, I.H.E.S. – Publ. Math. 50, (1979), 275–306. (1979) Zbl0426.58014MR0556581
- San Martin L. A. B., Arnold L., A Control problem related to the Lyapunov spectrum of stochastic flows, Mat. Apl. Comput. 5 (1986), 31–64. (1986) Zbl0641.93069MR0885003
- Sussmann H., Jurdjevic V., Controllability of nonlinear systems, J. Differential Equations 12 (1972), 95–116. (1972) MR0338882
- Taylor J. C., The Iwasawa decomposition and the limiting behavior of Brownian motion on a symmetric space of non-compact type, Contemp. Math. AMS 73 (1988), 303–302. (1988) MR0954647
- Warner G., Harmonic Analysis on Semi-simple Lie Groups, Springer-Verlag (1972). (1972) Zbl0265.22021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.