The contact system on the -jet spaces
J. Muñoz; F. J. Muriel; Josemar Rodríguez
Archivum Mathematicum (2001)
- Volume: 037, Issue: 4, page 291-300
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMuñoz, J., Muriel, F. J., and Rodríguez, Josemar. "The contact system on the $(m, \ell )$-jet spaces." Archivum Mathematicum 037.4 (2001): 291-300. <http://eudml.org/doc/248750>.
@article{Muñoz2001,
abstract = {This paper is a continuation of [MMR:98], where we give a construction of the canonical Pfaff system $\Omega (M_m^\ell )$ on the space of $(m,\ell )$-velocities of a smooth manifold $M$. Here we show that the characteristic system of $\Omega (M_m^\ell )$ agrees with the Lie algebra of $\operatorname\{Aut\}(\{\mathbb \{R\}\}_m^\ell )$, the structure group of the principal fibre bundle $\{\check\{M\}\}_m^\ell \longrightarrow J_m^\ell (M)$, hence it is projectable to an irreducible contact system on the space of $(m,\ell )$-jets ($=\ell $-th order contact elements of dimension $m$) of $M$. Furthermore, we translate to the language of Weil bundles the structure form of jet fibre bundles defined by Goldschmidt and Sternberg in [Gol:Ste:73].},
author = {Muñoz, J., Muriel, F. J., Rodríguez, Josemar},
journal = {Archivum Mathematicum},
keywords = {near points; jets; contact elements; contact system; velocities; near points; jets; contact elements; contact system; higher order velocities},
language = {eng},
number = {4},
pages = {291-300},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The contact system on the $(m, \ell )$-jet spaces},
url = {http://eudml.org/doc/248750},
volume = {037},
year = {2001},
}
TY - JOUR
AU - Muñoz, J.
AU - Muriel, F. J.
AU - Rodríguez, Josemar
TI - The contact system on the $(m, \ell )$-jet spaces
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 4
SP - 291
EP - 300
AB - This paper is a continuation of [MMR:98], where we give a construction of the canonical Pfaff system $\Omega (M_m^\ell )$ on the space of $(m,\ell )$-velocities of a smooth manifold $M$. Here we show that the characteristic system of $\Omega (M_m^\ell )$ agrees with the Lie algebra of $\operatorname{Aut}({\mathbb {R}}_m^\ell )$, the structure group of the principal fibre bundle ${\check{M}}_m^\ell \longrightarrow J_m^\ell (M)$, hence it is projectable to an irreducible contact system on the space of $(m,\ell )$-jets ($=\ell $-th order contact elements of dimension $m$) of $M$. Furthermore, we translate to the language of Weil bundles the structure form of jet fibre bundles defined by Goldschmidt and Sternberg in [Gol:Ste:73].
LA - eng
KW - near points; jets; contact elements; contact system; velocities; near points; jets; contact elements; contact system; higher order velocities
UR - http://eudml.org/doc/248750
ER -
References
top- Ehresmann C., Introduction à la théorie des structures infinitesimales et des pseudo-groupes de Lie, Colloque de Géometrie Différentielle, C.N.R.S. (1953), 97–110. (1953) MR0063123
- Goldschmidt H., Sternberg S., The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267. (1973) Zbl0243.49011MR0341531
- Grigore D. R., Krupka D., Invariants of velocities and higher order Grassmann bundles, J. Geom. Phys. 24 (1998), 244–264. (1998) Zbl0898.53013MR1491556
- Jacobson N., Lie algebras, John Wiley & Sons, Inc., New York, 1962. (1962) Zbl0121.27504MR0143793
- Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, New York, 1993. (1993) Zbl0782.53013MR1202431
- Morimoto A., Prolongation of connections to bundles of infinitely near points, J. Differential Geom. 11 (1976), 479–498. (1976) Zbl0358.53013MR0445422
- Muñoz J., Muriel F. J., Rodríguez J., Weil bundles and jet spaces, Czechoslovak Math. J. 50 (125) (2000), 721–748. Zbl1079.58500MR1792967
- Muñoz J., Muriel F. J., Rodríguez J., The contact system on the spaces of -velocities, Proceedings of the 7th International Conference Differential Geometry and Applications (Brno, 1998) (1999), 263–272. (1998)
- Weil A.,, Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117. (1953) Zbl0053.24903MR0061455
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.