The contact system for -jet manifolds
R. J. Alonso-Blanco; J. Muñoz-Díaz
Archivum Mathematicum (2004)
- Volume: 040, Issue: 3, page 233-248
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAlonso-Blanco, R. J., and Muñoz-Díaz, J.. "The contact system for $A$-jet manifolds." Archivum Mathematicum 040.3 (2004): 233-248. <http://eudml.org/doc/249294>.
@article{Alonso2004,
abstract = {Jets of a manifold $M$ can be described as ideals of $\mathcal \{C\}^\infty (M)$. This way, all the usual processes on jets can be directly referred to that ring. By using this fact, we give a very simple construction of the contact system on jet spaces. The same way, we also define the contact system for the recently considered $A$-jet spaces, where $A$ is a Weil algebra. We will need to introduce the concept of derived algebra.},
author = {Alonso-Blanco, R. J., Muñoz-Díaz, J.},
journal = {Archivum Mathematicum},
keywords = {jet; contact system; Weil algebra; Weil bundle; jet; Weil algebra; Weil bundle},
language = {eng},
number = {3},
pages = {233-248},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The contact system for $A$-jet manifolds},
url = {http://eudml.org/doc/249294},
volume = {040},
year = {2004},
}
TY - JOUR
AU - Alonso-Blanco, R. J.
AU - Muñoz-Díaz, J.
TI - The contact system for $A$-jet manifolds
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 3
SP - 233
EP - 248
AB - Jets of a manifold $M$ can be described as ideals of $\mathcal {C}^\infty (M)$. This way, all the usual processes on jets can be directly referred to that ring. By using this fact, we give a very simple construction of the contact system on jet spaces. The same way, we also define the contact system for the recently considered $A$-jet spaces, where $A$ is a Weil algebra. We will need to introduce the concept of derived algebra.
LA - eng
KW - jet; contact system; Weil algebra; Weil bundle; jet; Weil algebra; Weil bundle
UR - http://eudml.org/doc/249294
ER -
References
top- Alonso Blanco R. J., Jet manifold associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195–199. (199.) MR1785036
- Alonso Blanco R. J., On the local structure of -jet manifolds, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math Publ. 3, Silesian Univ. Opava 2001, 51–61. MR1978762
- Jiménez S., Muñoz J., Rodríguez J., On the reduction of some systems of partial differential equations to first order systems with only one unknown function, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math. Publ. 3, Silesian Univ. Opava 2001, 187–195. (195.) MR1978775
- Kolář I., Affine structure on Weil bundles, Nagoya Math. J. 158 (2000), 99–106. Zbl0961.58002MR1766571
- Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) MR1202431
- Lie S., Theorie der Transformationsgruppen, Leipzig, 1888. (Second edition in Chelsea Publishing Company, New York 1970). (1970) Zbl0248.22009
- Muñoz J., Muriel J., Rodríguez J., The canonical isomorphism between the prolongation of the symbols of a nonlinear Lie equation and its attached linear Lie equation, in Proccedings of Diff. Geom. and its Appl. (Brno, 1998), Masaryk Univ., Brno 1999, 255–261. (1998) MR1708913
- Muñoz J., Muriel J., Rodríguez J., Integrability of Lie equations and pseudogroups, J. Math. Anal. Appl. 252 (2000), 32–49. Zbl0973.58008MR1797843
- Muñoz J., Muriel J., Rodríguez J., Weil bundles and jet spaces, Czechoslovak Math. J. 50 (125) (2000), no. 4, 721–748. Zbl1079.58500MR1792967
- Muñoz J., Muriel J., Rodríguez J., A remark on Goldschmidt’s theorem on formal integrability, J. Math. Anal. Appl. 254 (2001), 275–290. Zbl0999.35003MR1807901
- Muñoz J., Muriel J., Rodríguez J., The contact system on the -jet spaces, Arch. Math. (Brno) 37 (2001), 291–300. MR1879452
- Muñoz J., Muriel J., Rodríguez J., On the finiteness of differential invariants, J. Math. Anal. Appl. 284 (2003), No. 1, 266–282. Zbl1070.58005MR1996132
- Rodríguez J., Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales, Ph. D. Thesis, Salamanca, 1990. (1990)
- Weil A., Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C. N. R. S. (1953), 111–117. (1953) Zbl0053.24903MR0061455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.