The property ( β ) of Orlicz-Bochner sequence spaces

Paweł Kolwicz

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 1, page 119-132
  • ISSN: 0010-2628

Abstract

top
A characterization of property ( β ) of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space l Φ ( X ) has the property ( β ) if and only if both spaces l Φ and X have it also. In particular the Lebesgue-Bochner sequence space l p ( X ) has the property ( β ) iff X has the property ( β ) . As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property ( β ) , nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.

How to cite

top

Kolwicz, Paweł. "The property ($\beta $) of Orlicz-Bochner sequence spaces." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 119-132. <http://eudml.org/doc/248766>.

@article{Kolwicz2001,
abstract = {A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.},
author = {Kolwicz, Paweł},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz-Bochner space; property $(\beta )$; Orlicz space; property; Orlicz-Bochner sequence space; uniform convexity; nearly uniform convexity; drop property; Kadec-Klee property; reflexivity},
language = {eng},
number = {1},
pages = {119-132},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The property ($\beta $) of Orlicz-Bochner sequence spaces},
url = {http://eudml.org/doc/248766},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Kolwicz, Paweł
TI - The property ($\beta $) of Orlicz-Bochner sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 119
EP - 132
AB - A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.
LA - eng
KW - Orlicz-Bochner space; property $(\beta )$; Orlicz space; property; Orlicz-Bochner sequence space; uniform convexity; nearly uniform convexity; drop property; Kadec-Klee property; reflexivity
UR - http://eudml.org/doc/248766
ER -

References

top
  1. Alherk G., Hudzik H., Uniformly non- l n ( 1 ) Musielak-Orlicz spaces of Bochner type, Forum Math. 1 (1989), 403-410. (1989) MR1016681
  2. Cerda J., Hudzik H., Mastyło M., Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos. Soc. 120 (1996), 521-533. (1996) MR1388204
  3. Chen S., Hudzik H., On some convexities of Orlicz and Orlicz-Bochner spaces, Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. (1988) Zbl0647.46030MR0937545
  4. Clarkson J.A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880
  5. Cui Y., Płuciennik R., Wang T., On property ( β ) in Orlicz spaces, Arch. Math. 69 (1997), 57-69. (1997) Zbl0894.46023MR1452160
  6. Greim P., Strongly exposed points in Bochner L p spaces, Proc. Amer. Math. Soc. 88 (1983), 81-84. (1983) MR0691281
  7. Hudzik H., Uniformly non- l n ( 1 ) Orlicz spaces with Luxemburg norm, Studia Math. 81.3 (1985), 271-284. (1985) MR0808569
  8. Hudzik H., Landes T., Characteristic of convexity of Köthe function spaces, Math. Ann. 294 (1992), 117-124. (1992) Zbl0761.46016MR1180454
  9. Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. (1980) Zbl0505.46011MR0595102
  10. Kamińska A., Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47 (1986), 302-322. (1986) MR0862227
  11. Kamińska A., Rotundity of Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 29 3-4 (1981), 137-144. (1981) MR0638755
  12. Kolwicz P., On property ( β ) in Banach lattices, Calderón-Lozanowskiĭ and Orlicz-Lorentz spaces, submitted. Zbl0993.46009
  13. Kolwicz P., Płuciennik R., P-convexity of Bochner-Orlicz spaces, Proc. Amer. Math. Soc. 126.8 (1998), 2315-2322. (1998) MR1443391
  14. Kutzarowa D.N., An isomorphic characterization of property ( β ) of Rolewicz, Note Mat. 10.2 (1990), 347-354. (1990) MR1204212
  15. Kutzarowa D.N., Maluta E., Prus S., Property ( β ) implies normal structure of the dual space, Rend. Circ. Math. Palermo 41 (1992), 335-368. (1992) MR1230583
  16. Lin P.K., Köthe Bochner Function Spaces, to appear. Zbl1054.46003MR2018062
  17. Montesinos V., Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. (1987) Zbl0652.46009MR0924764
  18. Płuciennik R., On characterization of strongly extreme points in Köthe Bochner spaces, Rocky Mountain J. Math. 27.1 (1997), 307-315. (1997) MR1453105
  19. Płuciennik R., Points of local uniform rotundity in Köthe Bochner spaces, Arch. Math. 70 (1998), 479-485. (1998) MR1621994
  20. Rolewicz S., On drop property, Studia Math. 85 (1987), 27-35. (1987) MR0879413
  21. Rolewicz S., On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 181-191. (1987) Zbl0652.46010MR0928575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.