The property () of Orlicz-Bochner sequence spaces
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 119-132
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKolwicz, Paweł. "The property ($\beta $) of Orlicz-Bochner sequence spaces." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 119-132. <http://eudml.org/doc/248766>.
@article{Kolwicz2001,
abstract = {A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.},
author = {Kolwicz, Paweł},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz-Bochner space; property $(\beta )$; Orlicz space; property; Orlicz-Bochner sequence space; uniform convexity; nearly uniform convexity; drop property; Kadec-Klee property; reflexivity},
language = {eng},
number = {1},
pages = {119-132},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The property ($\beta $) of Orlicz-Bochner sequence spaces},
url = {http://eudml.org/doc/248766},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Kolwicz, Paweł
TI - The property ($\beta $) of Orlicz-Bochner sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 119
EP - 132
AB - A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.
LA - eng
KW - Orlicz-Bochner space; property $(\beta )$; Orlicz space; property; Orlicz-Bochner sequence space; uniform convexity; nearly uniform convexity; drop property; Kadec-Klee property; reflexivity
UR - http://eudml.org/doc/248766
ER -
References
top- Alherk G., Hudzik H., Uniformly non- Musielak-Orlicz spaces of Bochner type, Forum Math. 1 (1989), 403-410. (1989) MR1016681
- Cerda J., Hudzik H., Mastyło M., Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos. Soc. 120 (1996), 521-533. (1996) MR1388204
- Chen S., Hudzik H., On some convexities of Orlicz and Orlicz-Bochner spaces, Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. (1988) Zbl0647.46030MR0937545
- Clarkson J.A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880
- Cui Y., Płuciennik R., Wang T., On property in Orlicz spaces, Arch. Math. 69 (1997), 57-69. (1997) Zbl0894.46023MR1452160
- Greim P., Strongly exposed points in Bochner spaces, Proc. Amer. Math. Soc. 88 (1983), 81-84. (1983) MR0691281
- Hudzik H., Uniformly non- Orlicz spaces with Luxemburg norm, Studia Math. 81.3 (1985), 271-284. (1985) MR0808569
- Hudzik H., Landes T., Characteristic of convexity of Köthe function spaces, Math. Ann. 294 (1992), 117-124. (1992) Zbl0761.46016MR1180454
- Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. (1980) Zbl0505.46011MR0595102
- Kamińska A., Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47 (1986), 302-322. (1986) MR0862227
- Kamińska A., Rotundity of Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 29 3-4 (1981), 137-144. (1981) MR0638755
- Kolwicz P., On property in Banach lattices, Calderón-Lozanowskiĭ and Orlicz-Lorentz spaces, submitted. Zbl0993.46009
- Kolwicz P., Płuciennik R., P-convexity of Bochner-Orlicz spaces, Proc. Amer. Math. Soc. 126.8 (1998), 2315-2322. (1998) MR1443391
- Kutzarowa D.N., An isomorphic characterization of property of Rolewicz, Note Mat. 10.2 (1990), 347-354. (1990) MR1204212
- Kutzarowa D.N., Maluta E., Prus S., Property implies normal structure of the dual space, Rend. Circ. Math. Palermo 41 (1992), 335-368. (1992) MR1230583
- Lin P.K., Köthe Bochner Function Spaces, to appear. Zbl1054.46003MR2018062
- Montesinos V., Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. (1987) Zbl0652.46009MR0924764
- Płuciennik R., On characterization of strongly extreme points in Köthe Bochner spaces, Rocky Mountain J. Math. 27.1 (1997), 307-315. (1997) MR1453105
- Płuciennik R., Points of local uniform rotundity in Köthe Bochner spaces, Arch. Math. 70 (1998), 479-485. (1998) MR1621994
- Rolewicz S., On drop property, Studia Math. 85 (1987), 27-35. (1987) MR0879413
- Rolewicz S., On -uniform convexity and drop property, Studia Math. 87 (1987), 181-191. (1987) Zbl0652.46010MR0928575
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.