Distributional chaos on tree maps: the star case
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 3, page 583-590
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCánovas, Jose S.. "Distributional chaos on tree maps: the star case." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 583-590. <http://eudml.org/doc/248770>.
@article{Cánovas2001,
abstract = {Let $\mathbb \{X\} =\lbrace z\in \mathbb \{C\}:z^n\in [0,1]\rbrace $, $n\in \mathbb \{N\}$, and let $f:\mathbb \{X\} \rightarrow \mathbb \{X\}$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.},
author = {Cánovas, Jose S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distributional chaos; topological entropy; star maps; distributional chaos; topological entropy; star maps},
language = {eng},
number = {3},
pages = {583-590},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Distributional chaos on tree maps: the star case},
url = {http://eudml.org/doc/248770},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Cánovas, Jose S.
TI - Distributional chaos on tree maps: the star case
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 583
EP - 590
AB - Let $\mathbb {X} =\lbrace z\in \mathbb {C}:z^n\in [0,1]\rbrace $, $n\in \mathbb {N}$, and let $f:\mathbb {X} \rightarrow \mathbb {X}$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.
LA - eng
KW - distributional chaos; topological entropy; star maps; distributional chaos; topological entropy; star maps
UR - http://eudml.org/doc/248770
ER -
References
top- Adler R.L., Konheim A.G., McAndrew M.H., Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. (1965) Zbl0127.13102MR0175106
- Alsedá L., Llibre J., Misiurewicz M., Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publishing, 1993. MR1255515
- Alsedá L., Moreno J.M., Linear orderings and the full periodicity kernel for the -star, J. Math. Anal. Appl. 180 (1993), 599-616. (1993) MR1251878
- Alsedá L., Ye X., Division for star maps with the branching point fixed, Acta Math. Univ. Comenian. 62 (1993), 237-248. (1993) MR1270511
- Babilonová M., Distributional chaos for triangular maps, Ann. Math. Sil. 13 (1999), 33-38. (1999) MR1735188
- Baldwin S., An extension of Sarkovskii's Theorem to the n-od, Ergodic Theory Dynamical Systems 11 (1991), 249-271. (1991) MR1116640
- Block L.S., Coppel W.A., Dynamics in one dimension, Lecture Notes in Math. Springer-Verlag, 1992. Zbl0746.58007MR1176513
- Blokh A., The spectral decomposition for one-dimensional maps, Dynamics Reported (Jones et al, eds.) 4, Springer-Verlag, Berlin, 1995. Zbl0828.58009MR1346496
- Cánovas J.S., Ruíz-Marín M., Soler-López G., Distributional chaos in duopoly games, preprint, 2000.
- Forti G.L., Paganoni L., A distributionally chaotic triangular map with zero topological sequence entropy, Math. Pannon. 9 (1998), 147-152. (1998) MR1620434
- Forti G.L., Paganoni L., Smítal J., Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc. 59 (1999), 1-20. (1999) MR1672771
- Hric R., Topological sequence entropy for maps of the circle, Comment. Math. Univ. Carolinae 41 (2000), 53-59. (2000) Zbl1039.37007MR1756926
- Li T.Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028
- Liao G., Fan Q., Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Science in China 41 (1998), 33-38. (1998) Zbl0931.54034MR1612875
- Málek M., Distributional chaos for continuous mappings of the circle, Ann. Math. Sil. 13 (1999), 205-210. (1999) MR1735203
- Llibre J., Misiurewicz M., Horseshoes, entropy and periods for graph maps, Topology 32 (1993), 649-664. (1993) Zbl0787.54021MR1231969
- Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737-754. (1994) MR1227094
- Smítal J., Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. (1986) MR0849479
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.