Topological sequence entropy for maps of the circle

Roman Hric

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 1, page 53-59
  • ISSN: 0010-2628

Abstract

top
A continuous map f of the interval is chaotic iff there is an increasing sequence of nonnegative integers T such that the topological sequence entropy of f relative to T , h T ( f ) , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that h T ( f ) = 0 ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.

How to cite

top

Hric, Roman. "Topological sequence entropy for maps of the circle." Commentationes Mathematicae Universitatis Carolinae 41.1 (2000): 53-59. <http://eudml.org/doc/248584>.

@article{Hric2000,
abstract = {A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.},
author = {Hric, Roman},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {chaotic map; circle map; topological sequence entropy; chaotic map; circle map; topological sequence; entropy},
language = {eng},
number = {1},
pages = {53-59},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Topological sequence entropy for maps of the circle},
url = {http://eudml.org/doc/248584},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Hric, Roman
TI - Topological sequence entropy for maps of the circle
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 1
SP - 53
EP - 59
AB - A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.
LA - eng
KW - chaotic map; circle map; topological sequence entropy; chaotic map; circle map; topological sequence; entropy
UR - http://eudml.org/doc/248584
ER -

References

top
  1. Alsedà L., Llibre J., Misiurewicz M., Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publ. Singapore (1993). (1993) MR1255515
  2. Auslander J., Katznelson Y., Continuous maps of the circle without periodic points, Israel. J. Math. 32 (1979), 375-381. (1979) Zbl0442.54011MR0571091
  3. Balibrea F., Cánovas J.S., Jiménez López V., Commutativity and noncommutativity of topological sequence entropy, preprint. 
  4. Block L.S., Coppel W.A., Dynamics in One Dimension, Lecture Notes in Math., vol. 1513 Springer Berlin (1992). (1992) Zbl0746.58007MR1176513
  5. Franzová N., Smítal J., Positive sequence entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083-1086. (1991) MR1062387
  6. Goodman T.N.T., Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331-350. (1974) Zbl0293.54043MR0356009
  7. Hocking J.G., Young G.S., Topology, Dover New York (1988). (1988) Zbl0718.55001MR0939613
  8. Hric R., Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc. 127 (1999), 2045-2052. (1999) Zbl0923.26004MR1487372
  9. Janková K., Smítal J., A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283-292. (1986) MR0854575
  10. Kolyada S., Snoha Ł., Topological entropy of nonautonomous dynamical systems, Random and Comp. Dynamics 4 (1996), 205-233. (1996) Zbl0909.54012MR1402417
  11. Kuchta M., Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolinae 31 (1990), 383-390. (1990) Zbl0728.26011MR1077909
  12. Kuchta M., Smítal J., Two point scrambled set implies chaos, European Conference on Iteration Theory ECIT'87 World Sci. Publishing Co. Singapore. MR1085314
  13. Lemańczyk M., The sequence entropy for Morse shifts and some counterexamples, Studia Math. 52 (1985), 221-241. (1985) MR0825480
  14. Li T Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028
  15. Smítal J., Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-281. (1986) MR0849479

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.