Topological sequence entropy for maps of the circle
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 1, page 53-59
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHric, Roman. "Topological sequence entropy for maps of the circle." Commentationes Mathematicae Universitatis Carolinae 41.1 (2000): 53-59. <http://eudml.org/doc/248584>.
@article{Hric2000,
abstract = {A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.},
author = {Hric, Roman},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {chaotic map; circle map; topological sequence entropy; chaotic map; circle map; topological sequence; entropy},
language = {eng},
number = {1},
pages = {53-59},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Topological sequence entropy for maps of the circle},
url = {http://eudml.org/doc/248584},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Hric, Roman
TI - Topological sequence entropy for maps of the circle
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 1
SP - 53
EP - 59
AB - A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.
LA - eng
KW - chaotic map; circle map; topological sequence entropy; chaotic map; circle map; topological sequence; entropy
UR - http://eudml.org/doc/248584
ER -
References
top- Alsedà L., Llibre J., Misiurewicz M., Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publ. Singapore (1993). (1993) MR1255515
- Auslander J., Katznelson Y., Continuous maps of the circle without periodic points, Israel. J. Math. 32 (1979), 375-381. (1979) Zbl0442.54011MR0571091
- Balibrea F., Cánovas J.S., Jiménez López V., Commutativity and noncommutativity of topological sequence entropy, preprint.
- Block L.S., Coppel W.A., Dynamics in One Dimension, Lecture Notes in Math., vol. 1513 Springer Berlin (1992). (1992) Zbl0746.58007MR1176513
- Franzová N., Smítal J., Positive sequence entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083-1086. (1991) MR1062387
- Goodman T.N.T., Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331-350. (1974) Zbl0293.54043MR0356009
- Hocking J.G., Young G.S., Topology, Dover New York (1988). (1988) Zbl0718.55001MR0939613
- Hric R., Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc. 127 (1999), 2045-2052. (1999) Zbl0923.26004MR1487372
- Janková K., Smítal J., A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283-292. (1986) MR0854575
- Kolyada S., Snoha Ł., Topological entropy of nonautonomous dynamical systems, Random and Comp. Dynamics 4 (1996), 205-233. (1996) Zbl0909.54012MR1402417
- Kuchta M., Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolinae 31 (1990), 383-390. (1990) Zbl0728.26011MR1077909
- Kuchta M., Smítal J., Two point scrambled set implies chaos, European Conference on Iteration Theory ECIT'87 World Sci. Publishing Co. Singapore. MR1085314
- Lemańczyk M., The sequence entropy for Morse shifts and some counterexamples, Studia Math. 52 (1985), 221-241. (1985) MR0825480
- Li T Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028
- Smítal J., Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-281. (1986) MR0849479
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.