Triangularization of some families of operators on locally convex spaces

Edvard Kramar

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 3, page 499-506
  • ISSN: 0010-2628

Abstract

top
Some results concerning triangularization of some operators on locally convex spaces are established.

How to cite

top

Kramar, Edvard. "Triangularization of some families of operators on locally convex spaces." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 499-506. <http://eudml.org/doc/248773>.

@article{Kramar2001,
abstract = {Some results concerning triangularization of some operators on locally convex spaces are established.},
author = {Kramar, Edvard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally convex space; triangularization; invariant subspace; compact operator; quasinilpotent operator; locally convex space; triangularisation; invariant subspace; compact operator; quasinilpotent operator},
language = {eng},
number = {3},
pages = {499-506},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Triangularization of some families of operators on locally convex spaces},
url = {http://eudml.org/doc/248773},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Kramar, Edvard
TI - Triangularization of some families of operators on locally convex spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 499
EP - 506
AB - Some results concerning triangularization of some operators on locally convex spaces are established.
LA - eng
KW - locally convex space; triangularization; invariant subspace; compact operator; quasinilpotent operator; locally convex space; triangularisation; invariant subspace; compact operator; quasinilpotent operator
UR - http://eudml.org/doc/248773
ER -

References

top
  1. Edwards R.E., Functional Analysis, Theory and Applications, Holt, Reinehart and Winston, New York, 1965. Zbl0189.12103MR0221256
  2. Floret K., Wloka J., Einführung in die Theorie der lokalkonvexen Räumen, Springer-Verlag, Berlin, Heidelberg, New York, 1968. MR0226355
  3. Grabiner S., The nilpotency of Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510. (1969) Zbl0174.44602MR0236700
  4. Hadwin D., Nordgren E., Radjabalipour M., Radjavi H., Rosenthal P., On simultaneous triangularization of collection of operators, Houston J. Math. 17 (1991), 581-602. (1991) MR1147275
  5. Katavolos A., Radjavi H., Simultaneous triangulation of operators on a Banach space, J. London Math. Soc. 41 (1990), 547-554. (1990) MR1072047
  6. Kramar E., Invariant subspaces for some operators on locally convex spaces, Comment. Math. Univ. Carolinae 38 (1997), 635-644. (1997) Zbl0937.47005MR1601676
  7. Litvinov G.L., Lomonosov V.I., Density theorems in locally convex spaces and theirs applications (in Russian), Trudi sem. vekt. i tenz. analiza 20 (1981), 210-227. (1981) MR0622018
  8. Lomonosov V.I., Invariant subspace of operators commuting with compact operators, Funct. Anal. Appl. 7 (1973), 213-214. (1973) MR0420305
  9. Ma T.W., On rank one commutators and triangular representations, Canad. Math. Bull. 29 (1986), 268-273. (1986) Zbl0555.47004MR0846703
  10. Mendoza R.V., The ( Γ , t ) -topology on L ( E , E ) and the spectrum of a bounded linear operator on a locally convex topological vector space, Bol. Soc. Mat. Mexicana 3 (1997), 151-164. (1997) Zbl0905.46004MR1452669
  11. Radjavi H., Rosenthal P., From local to global triangularization, J. Funct. Anal. 147 (1997), 443-456. (1997) Zbl0902.47019MR1454489
  12. Ringrose J.R., Super-diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367-384. (1962) Zbl0102.10301MR0136998
  13. Uss P., Sur les opérateurs bornés dans les espaces localement convexes, Studia Math. 37 (1971), 139-158. (1971) Zbl0212.15901MR0303328

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.