Lipschitz-quotients and the Kunen-Martin Theorem

Yves Dutrieux

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 641-648
  • ISSN: 0010-2628

Abstract

top
We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets K and L such that C ( L ) is a Lipschitz-quotient of C ( K ) (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.

How to cite

top

Dutrieux, Yves. "Lipschitz-quotients and the Kunen-Martin Theorem." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 641-648. <http://eudml.org/doc/248784>.

@article{Dutrieux2001,
abstract = {We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets $K$ and $L$ such that $C(L)$ is a Lipschitz-quotient of $C(K)$ (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.},
author = {Dutrieux, Yves},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lipschitz equivalences; Szenk index; Lipschitz equivalences; Szlenk index; descriptive set theory; Banach space},
language = {eng},
number = {4},
pages = {641-648},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lipschitz-quotients and the Kunen-Martin Theorem},
url = {http://eudml.org/doc/248784},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Dutrieux, Yves
TI - Lipschitz-quotients and the Kunen-Martin Theorem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 641
EP - 648
AB - We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets $K$ and $L$ such that $C(L)$ is a Lipschitz-quotient of $C(K)$ (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.
LA - eng
KW - Lipschitz equivalences; Szenk index; Lipschitz equivalences; Szlenk index; descriptive set theory; Banach space
UR - http://eudml.org/doc/248784
ER -

References

top
  1. Godefroy N.J., Kalton G., Lancien G., Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. (2000), to appear. Zbl0981.46007MR1837213
  2. Bates W., Johnson J., Lindenstrauss D., Preiss G., Schechtman S., Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. (1999), 6 1092-1127. (1999) Zbl0954.46014MR1736929
  3. Bossard B., Théorie descriptive des ensembles en géométrie des espaces de Banach, Thèse de doctorat de l'Université Paris VI, (in French), 1994. 
  4. Lancien G., On the Szlenk index and the weak*-dentability index, Quart. J. Math. Oxford (2) (1996), 47 59-71. (1996) Zbl0973.46014MR1380950
  5. Kechris A., Louveau A., Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Series (1987), 128. (1987) Zbl0642.42014
  6. Heinrich P., Mankiewicz S., Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. (1982), 73 225-251. (1982) Zbl0506.46008MR0675426
  7. Bourgain J., New classes of p -spaces, Lecture Notes in Mathematics 889, Springer Verlag, 1981. MR0639014
  8. Christensen J., Topology and Borel structure; descriptive topology and set theory with applications to functional analysis and measure theory, North-Holland Math. Stud. (1974), 10. (1974) Zbl0273.28001MR0348724
  9. Bossard B., Codages des espaces de Banach séparables; familles analytiques et coanalytiques d'espaces de Banach, C.R. Acad. Sci. Paris, Série I, 316 (1993), 1005-1010. (1993) MR1222962
  10. Benyamini J., Lindenstrauss Y., Geometric nonlinear functional analysis vol. I, AMS Colloquium Publications (2000), 48. (2000) 
  11. Godefroy N., Kalton G., Lancien G., Subspaces of c 0 ( ) and Lipschitz isomorphisms, Geom. Funct. Anal. (2000), to appear. 
  12. Ribe M, Existence of separable uniformly homeomorphic non isomorphic Banach spaces, Israel J. Math. (1984), 48 139-147. (1984) MR0770696
  13. Bessaga A., Pełczyński C., Spaces of continuous functions (IV), Studia Math. (1960), 19 53-62. (1960) Zbl0094.30303MR0113132

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.