Lipschitz-quotients and the Kunen-Martin Theorem
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 4, page 641-648
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDutrieux, Yves. "Lipschitz-quotients and the Kunen-Martin Theorem." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 641-648. <http://eudml.org/doc/248784>.
@article{Dutrieux2001,
abstract = {We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets $K$ and $L$ such that $C(L)$ is a Lipschitz-quotient of $C(K)$ (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.},
author = {Dutrieux, Yves},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lipschitz equivalences; Szenk index; Lipschitz equivalences; Szlenk index; descriptive set theory; Banach space},
language = {eng},
number = {4},
pages = {641-648},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lipschitz-quotients and the Kunen-Martin Theorem},
url = {http://eudml.org/doc/248784},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Dutrieux, Yves
TI - Lipschitz-quotients and the Kunen-Martin Theorem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 641
EP - 648
AB - We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets $K$ and $L$ such that $C(L)$ is a Lipschitz-quotient of $C(K)$ (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.
LA - eng
KW - Lipschitz equivalences; Szenk index; Lipschitz equivalences; Szlenk index; descriptive set theory; Banach space
UR - http://eudml.org/doc/248784
ER -
References
top- Godefroy N.J., Kalton G., Lancien G., Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. (2000), to appear. Zbl0981.46007MR1837213
- Bates W., Johnson J., Lindenstrauss D., Preiss G., Schechtman S., Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. (1999), 6 1092-1127. (1999) Zbl0954.46014MR1736929
- Bossard B., Théorie descriptive des ensembles en géométrie des espaces de Banach, Thèse de doctorat de l'Université Paris VI, (in French), 1994.
- Lancien G., On the Szlenk index and the weak*-dentability index, Quart. J. Math. Oxford (2) (1996), 47 59-71. (1996) Zbl0973.46014MR1380950
- Kechris A., Louveau A., Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Series (1987), 128. (1987) Zbl0642.42014
- Heinrich P., Mankiewicz S., Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. (1982), 73 225-251. (1982) Zbl0506.46008MR0675426
- Bourgain J., New classes of -spaces, Lecture Notes in Mathematics 889, Springer Verlag, 1981. MR0639014
- Christensen J., Topology and Borel structure; descriptive topology and set theory with applications to functional analysis and measure theory, North-Holland Math. Stud. (1974), 10. (1974) Zbl0273.28001MR0348724
- Bossard B., Codages des espaces de Banach séparables; familles analytiques et coanalytiques d'espaces de Banach, C.R. Acad. Sci. Paris, Série I, 316 (1993), 1005-1010. (1993) MR1222962
- Benyamini J., Lindenstrauss Y., Geometric nonlinear functional analysis vol. I, AMS Colloquium Publications (2000), 48. (2000)
- Godefroy N., Kalton G., Lancien G., Subspaces of and Lipschitz isomorphisms, Geom. Funct. Anal. (2000), to appear.
- Ribe M, Existence of separable uniformly homeomorphic non isomorphic Banach spaces, Israel J. Math. (1984), 48 139-147. (1984) MR0770696
- Bessaga A., Pełczyński C., Spaces of continuous functions (IV), Studia Math. (1960), 19 53-62. (1960) Zbl0094.30303MR0113132
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.