Condensations of Tychonoff universal topological algebras

Constancio Hernández

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 3, page 529-533
  • ISSN: 0010-2628

Abstract

top
Let ( L , 𝒯 ) be a Tychonoff (regular) paratopological group or algebra over a field or ring K or a topological semigroup. If nw ( L , 𝒯 ) τ and nw ( K ) τ , then there exists a Tychonoff (regular) topology 𝒯 * 𝒯 such that w ( L , 𝒯 * ) τ and ( L , 𝒯 * ) is a paratopological group, algebra over K or a topological semigroup respectively.

How to cite

top

Hernández, Constancio. "Condensations of Tychonoff universal topological algebras." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 529-533. <http://eudml.org/doc/248796>.

@article{Hernández2001,
abstract = {Let $(L,\mathcal \{T\})$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname\{nw\}(L,\mathcal \{T\})\le \tau $ and $\operatorname\{nw\}(K)\le \tau $, then there exists a Tychonoff (regular) topology $\mathcal \{T\}^*\subseteq \mathcal \{T\}$ such that $w(L,\mathcal \{T\}^*)\le \tau $ and $(L,\mathcal \{T\}^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.},
author = {Hernández, Constancio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal algebra; paratopological group; topological group; universal algebra; paratopological group; topological group},
language = {eng},
number = {3},
pages = {529-533},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Condensations of Tychonoff universal topological algebras},
url = {http://eudml.org/doc/248796},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Hernández, Constancio
TI - Condensations of Tychonoff universal topological algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 529
EP - 533
AB - Let $(L,\mathcal {T})$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\mathcal {T})\le \tau $ and $\operatorname{nw}(K)\le \tau $, then there exists a Tychonoff (regular) topology $\mathcal {T}^*\subseteq \mathcal {T}$ such that $w(L,\mathcal {T}^*)\le \tau $ and $(L,\mathcal {T}^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.
LA - eng
KW - universal algebra; paratopological group; topological group; universal algebra; paratopological group; topological group
UR - http://eudml.org/doc/248796
ER -

References

top
  1. Arhangel'skiĭA.V., Cardinal invariants of topological groups: Enbeddings and condensations, Dokl. Akad. Nauk SSSR 247 (1979), 779-782. (1979) MR0553825
  2. ArkhangelskiĭA.V., Ponomarev V.I., Fundamentals of General Topology, D. Reidel Publishing Company, 1984. Zbl0568.54001MR0785749
  3. Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
  4. Künzi H.A., Romaguera S., Sipacheva O.V., The Doitchinov completion of a regular paratopological group, Serdica Math. J. 24 (1998), 73-88. (1998) MR1679193
  5. Shakhmatov D.B., Condensation of universal topological algebras that preserve continuity of operations and decrease weight, Vestnik Mosk. Univ. 39 (1984), 42-45. (1984) MR0741161
  6. Shakhmatov D.B., Factorization of mappings of topological spaces and homomorphisms of topological groups in accordance with weight and dimension ind, J. Math. Sci. 75 (1995), 3 1754-1769. (1995) MR1339205
  7. Stephenson R.M., Minimal topological groups, Math. Ann. 19 (1971), 193-195. (1971) Zbl0206.31601MR0286934
  8. Tkačenko M.G., Subgroups, quotient groups and products of -factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) MR1206464

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.