Condensations of Tychonoff universal topological algebras
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 3, page 529-533
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHernández, Constancio. "Condensations of Tychonoff universal topological algebras." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 529-533. <http://eudml.org/doc/248796>.
@article{Hernández2001,
abstract = {Let $(L,\mathcal \{T\})$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname\{nw\}(L,\mathcal \{T\})\le \tau $ and $\operatorname\{nw\}(K)\le \tau $, then there exists a Tychonoff (regular) topology $\mathcal \{T\}^*\subseteq \mathcal \{T\}$ such that $w(L,\mathcal \{T\}^*)\le \tau $ and $(L,\mathcal \{T\}^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.},
author = {Hernández, Constancio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal algebra; paratopological group; topological group; universal algebra; paratopological group; topological group},
language = {eng},
number = {3},
pages = {529-533},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Condensations of Tychonoff universal topological algebras},
url = {http://eudml.org/doc/248796},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Hernández, Constancio
TI - Condensations of Tychonoff universal topological algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 529
EP - 533
AB - Let $(L,\mathcal {T})$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\mathcal {T})\le \tau $ and $\operatorname{nw}(K)\le \tau $, then there exists a Tychonoff (regular) topology $\mathcal {T}^*\subseteq \mathcal {T}$ such that $w(L,\mathcal {T}^*)\le \tau $ and $(L,\mathcal {T}^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.
LA - eng
KW - universal algebra; paratopological group; topological group; universal algebra; paratopological group; topological group
UR - http://eudml.org/doc/248796
ER -
References
top- Arhangel'skiĭA.V., Cardinal invariants of topological groups: Enbeddings and condensations, Dokl. Akad. Nauk SSSR 247 (1979), 779-782. (1979) MR0553825
- ArkhangelskiĭA.V., Ponomarev V.I., Fundamentals of General Topology, D. Reidel Publishing Company, 1984. Zbl0568.54001MR0785749
- Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
- Künzi H.A., Romaguera S., Sipacheva O.V., The Doitchinov completion of a regular paratopological group, Serdica Math. J. 24 (1998), 73-88. (1998) MR1679193
- Shakhmatov D.B., Condensation of universal topological algebras that preserve continuity of operations and decrease weight, Vestnik Mosk. Univ. 39 (1984), 42-45. (1984) MR0741161
- Shakhmatov D.B., Factorization of mappings of topological spaces and homomorphisms of topological groups in accordance with weight and dimension ind, J. Math. Sci. 75 (1995), 3 1754-1769. (1995) MR1339205
- Stephenson R.M., Minimal topological groups, Math. Ann. 19 (1971), 193-195. (1971) Zbl0206.31601MR0286934
- Tkačenko M.G., Subgroups, quotient groups and products of -factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) MR1206464
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.