Cardinal invariants of paratopological groups
Topological Algebra and its Applications (2013)
- Volume: 1, page 37-45
- ISSN: 2299-3231
Access Full Article
topAbstract
topHow to cite
topIván Sánchez. "Cardinal invariants of paratopological groups." Topological Algebra and its Applications 1 (2013): 37-45. <http://eudml.org/doc/267157>.
@article{IvánSánchez2013,
abstract = {We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf number. We also prove that every Hausdorff paratopological group with countable π- character has a regular Gσ-diagonal.},
author = {Iván Sánchez},
journal = {Topological Algebra and its Applications},
keywords = {Paratopological group; Totally ω-narrow; Index of regularity; Weak Lindelöf number; Hausdorff number; Symmetry number; Regular Gσ-diagonal; paratopological group; semitopological group; cardinal invariant; totally narrow; index of regularity; weak Lindelöf number; symmetry number; regular -diagonal},
language = {eng},
pages = {37-45},
title = {Cardinal invariants of paratopological groups},
url = {http://eudml.org/doc/267157},
volume = {1},
year = {2013},
}
TY - JOUR
AU - Iván Sánchez
TI - Cardinal invariants of paratopological groups
JO - Topological Algebra and its Applications
PY - 2013
VL - 1
SP - 37
EP - 45
AB - We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf number. We also prove that every Hausdorff paratopological group with countable π- character has a regular Gσ-diagonal.
LA - eng
KW - Paratopological group; Totally ω-narrow; Index of regularity; Weak Lindelöf number; Hausdorff number; Symmetry number; Regular Gσ-diagonal; paratopological group; semitopological group; cardinal invariant; totally narrow; index of regularity; weak Lindelöf number; symmetry number; regular -diagonal
UR - http://eudml.org/doc/267157
ER -
References
top- [1] A. V. Arhangel’skii, D. K. Burke, Spaces with a regular Gσ-diagonal, Topol. Appl. 153 No. 11 (2006), 1917–1929.
- [2] A.V. Arhangel’skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005) 107–119. [WoS]
- [3] A.V. Arhangel’skii, M.G. Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics, Vol. I, Atlantis Press/World Scientific, Paris-Amsterdam, 2008.
- [4] T. Banakh, A. Ravsky, On subgroups of saturated or totally bounded paratopological groups, Algebra and Discrete Mathematics No. 4 (2003) 1–20. Zbl1061.22003
- [5] T. Banakh, O. Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraical Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), 140–153. Zbl1098.22004
- [6] R. Z. Buzyakova, Observations on spaces with zeroset or regular Gσ-diagonals, Comment. Math. Univ. Carolin. 46 (2005), No. 3, 469–473. Zbl1121.54051
- [7] R. Engelkig, General Topology, Heldermann Verlag, Berlin, 1989.
- [8] C. Hernández, Condensations of Tychonoff universal topological algebras, Comment. Math. Univ. Carolin. 42 (2001), No. 3, 529–533. Zbl1053.54044
- [9] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I, Structure of Topological Groups, Integration Theory, Group Representations. Second edition. Fund. Prin. of Math. Sci., 115. (Springer-Verlag, Berlin-New York, 1979). Zbl0416.43001
- [10] I. Juhász, Cardinal functions in topology–ten years later, second ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980. Zbl0479.54001
- [11] P. Li, L. Mou, S. Wang, Notes on questions about spaces with algebraic structures, Topology Appl. 159 (2012), 3619–3623. [WoS] Zbl1256.54062
- [12] C. Liu, A note on paratopological groups, Comment. Math. Univ. Carolin. 47 No. 4 (2006), 633–640. Zbl1150.54036
- [13] O.V. Ravsky, Paratopological groups I, Matematychni Studii 16 (2001), No. 1, 37–48. Zbl0989.22007
- [14] O.V. Ravsky, Paratopological groups II, Matematychni Studii 17 (2002), No. 1, 93–101. Zbl1018.22001
- [15] D.B. Shakhmatov, Condensation of universal topological algebras that preserve continuity of operations and decrease weight, Vestnik Mosk. Univ. 39 (1984), 42–45.
- [16] I. Sánchez, Subgroups of products of paratopological groups, Topology Apply., to appear. [WoS]
- [17] M. Sanchis, M.G. Tkachenko, Recent progress in paratopological groups, Quaderni Math. (2012), in press. Zbl1294.54002
- [18] M. Sanchis, M.G. Tkachenko, Totally Lindelöf and totally !-narrow paratopological groups, Topology Apply. 155 (2007) 322–334.
- [19] M.G. Tkachenko, Introduction to topological groups, Topology Appl. 86 (1998) 179–231. [Crossref]
- [20] M.G. Tkachenko, Embedding paratopological groups into topological products, Topology Appl. 156 (2009) 1298– 1305. [WoS] Zbl1166.54016
- [21] M.G Tkachenko, Paratopological and semitopological groups vs topological groups, In: Recent Progress in General Topology III, Elsevier, to appear. Zbl1305.54005
- [22] M.G. Tkachenko, Paratopological Groups: Some Questions and Problems, Q&A in General Topology 27 No. 1 (2009), 1–21. Zbl1173.54315
- [23] L.H. Xie, S. Lin, Submetrizability in paratopological groups, submitted.
- [24] P. Zenor, On spaces with regular Gσ-diagonals, Pacific J. Math. 40 (1972), 759–763. Zbl0213.49504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.