Construction of BGG sequences for AHS structures
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 31-52
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKrump, Lukáš. "Construction of BGG sequences for AHS structures." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 31-52. <http://eudml.org/doc/248798>.
@article{Krump2001,
abstract = {This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown.},
author = {Krump, Lukáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hermitian symmetric spaces; standard operators; BGG sequence; Hasse diagram; weight graph; almost Hermitian structure; Hermitian symmetric space; BGG sequence; Hasse diagram; weight graph},
language = {eng},
number = {1},
pages = {31-52},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Construction of BGG sequences for AHS structures},
url = {http://eudml.org/doc/248798},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Krump, Lukáš
TI - Construction of BGG sequences for AHS structures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 31
EP - 52
AB - This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown.
LA - eng
KW - Hermitian symmetric spaces; standard operators; BGG sequence; Hasse diagram; weight graph; almost Hermitian structure; Hermitian symmetric space; BGG sequence; Hasse diagram; weight graph
UR - http://eudml.org/doc/248798
ER -
References
top- Baston R.J., Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential invariants, Duke Math. J. 63 (1991), 81-111, 113-138. (1991) MR1106939
- Baston R.J., Eastwood M.G., Penrose Transform; Its Interaction with Representation Theory, Clarendon Press, Oxford, 1989. Zbl0726.58004MR1038279
- Bernstein I.N., Gelfand I.M., Gelfand S.I., Structure of representations generated vectors of highest weight, Funct. Anal. Appl. 5 (1971), 1-8. (1971) MR0291204
- Bernstein I.N., Gelfand I.M., Gelfand S.I., Differential operators on the base affine space and a study of -modules, in ``Lie Groups and their Representations'' (ed. I.M. Gelfand) Adam Hilger, 1975, pp.21-64. MR0578996
- Branson T., Ólafsson G., Ørsted B., Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal. 135 (1996), 163-205. (1996) MR1367629
- Bureš J., Special invariant operators I, Comment. Math. Univ. Carolinae 37.1 (1996), 179-198. (1996) MR1396170
- Čap A., Translation of natural operators on manifolds with AHS-structures, Archivum Math. (Brno) 32.4 (1996), 249-266, electronically available at www.emis.de. (1996) MR1441397
- Čap A., Schichl H., Parabolic Geometries and Canonical Cartan Connections, preprint ESI 450, electronically available at www.esi.ac.at. MR1795487
- Čap A., Slovák J., Souček V., Invariant operators on manifolds with almost Hermitian symmetric structures, I. Invariant differentiation, Acta Math. Univ. Commenianae 66 (1997), 33-69, electronically available at www.emis.de. (1997) MR1474550
- Čap A., Slovák J., Souček V., Invariant operators on manifolds with almost Hermitian symmetric structures, II. Normal Cartan connections, Acta Math. Univ. Commenianae, 66 (1997), 203-220, electronically available at www.emis.de. (1997) MR1620484
- Čap, A., Slovák J., Souček V., Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard Operators, ESI Preprint 613, to appear in J. Differential Geom. Appl., electronically available at www.esi.ac.at. Zbl0969.53004MR1757020
- Eastwood M.G., On the weights of conformally invariant operators, Twistor Newsl. 24 (1987), 20-23. (1987)
- Eastwood M.G., Slovák J., Semi-holonomic Verma modules, J. Algebra 197 (1997), 424-448. (1997) MR1483772
- Fegan H.D., Conformally invariant first order differential operators, Quart. J. Math. 27 (1976), 371-378. (1976) Zbl0334.58016MR0482879
- Fulton W., Harris J., Representation Theory - A First Course, Springer-Verlag (GTM), 1991. Zbl0744.22001MR1153249
- Garland H., Lepowsky J., Lie Algebra Homology and the Macdonald-Kac Formulae, Inv. Math. 34, Springer, 1976. MR0414645
- Gindikin S.G., Generalized conformal structures, Twistors in Mathematics and Physics, LMS Lecture Notes 156, Cambridge Univ. Press, 1990, pp.36-52. Zbl0788.22008MR1089908
- Goncharov A.B., Generalized conformal structures on manifolds, Selecta Math. Soviet. 6 (1987), 308-340. (1987) Zbl0632.53038MR0925263
- Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0447.17002MR0323842
- Jakobsen H.P., Conformal invariants, Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. (1986) MR0849262
- Jacobson N., Lie Algebras, Interscience Tracts, No. 10, 1962. Zbl0333.17009MR0143793
- Johnson K.D., Decomposition of Exterior Algebras, Contemp. Math. 191, AMS, 1995. Zbl0851.57040MR1365537
- Kobayashi S., Nagano T., On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964), 875-907. (1964) Zbl0142.19504MR0168704
- Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer, 1993. MR1202431
- Lepowsky J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra 49 (1977), 496-511. (1977) Zbl0381.17006MR0476813
- Sharpe R.W., Differential Geometry, Graduate Texts in Mathematics 166, Springer-Verlag, 1997. Zbl0876.53001MR1453120
- Slovák J., On the geometry of almost Hermitian symmetric structures, in Proceedings of the Conference Differential Geometry and Applications, 1995, Brno, Masaryk University, Brno (1996), pp.191-206, electronically available at www.emis.de. MR1406338
- Slovák J., Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
- Verma D.N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160-166. (1968) Zbl0157.07604MR0218417
- Wünsch V., On conformally invariant differential operators, Math. Nachr. 129 (1986), 269-281. (1986) MR0864639
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.