Construction of BGG sequences for AHS structures

Lukáš Krump

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 1, page 31-52
  • ISSN: 0010-2628

Abstract

top
This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown.

How to cite

top

Krump, Lukáš. "Construction of BGG sequences for AHS structures." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 31-52. <http://eudml.org/doc/248798>.

@article{Krump2001,
abstract = {This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown.},
author = {Krump, Lukáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hermitian symmetric spaces; standard operators; BGG sequence; Hasse diagram; weight graph; almost Hermitian structure; Hermitian symmetric space; BGG sequence; Hasse diagram; weight graph},
language = {eng},
number = {1},
pages = {31-52},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Construction of BGG sequences for AHS structures},
url = {http://eudml.org/doc/248798},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Krump, Lukáš
TI - Construction of BGG sequences for AHS structures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 31
EP - 52
AB - This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown.
LA - eng
KW - Hermitian symmetric spaces; standard operators; BGG sequence; Hasse diagram; weight graph; almost Hermitian structure; Hermitian symmetric space; BGG sequence; Hasse diagram; weight graph
UR - http://eudml.org/doc/248798
ER -

References

top
  1. Baston R.J., Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential invariants, Duke Math. J. 63 (1991), 81-111, 113-138. (1991) MR1106939
  2. Baston R.J., Eastwood M.G., Penrose Transform; Its Interaction with Representation Theory, Clarendon Press, Oxford, 1989. Zbl0726.58004MR1038279
  3. Bernstein I.N., Gelfand I.M., Gelfand S.I., Structure of representations generated vectors of highest weight, Funct. Anal. Appl. 5 (1971), 1-8. (1971) MR0291204
  4. Bernstein I.N., Gelfand I.M., Gelfand S.I., Differential operators on the base affine space and a study of 𝔤 -modules, in ``Lie Groups and their Representations'' (ed. I.M. Gelfand) Adam Hilger, 1975, pp.21-64. MR0578996
  5. Branson T., Ólafsson G., Ørsted B., Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal. 135 (1996), 163-205. (1996) MR1367629
  6. Bureš J., Special invariant operators I, Comment. Math. Univ. Carolinae 37.1 (1996), 179-198. (1996) MR1396170
  7. Čap A., Translation of natural operators on manifolds with AHS-structures, Archivum Math. (Brno) 32.4 (1996), 249-266, electronically available at www.emis.de. (1996) MR1441397
  8. Čap A., Schichl H., Parabolic Geometries and Canonical Cartan Connections, preprint ESI 450, electronically available at www.esi.ac.at. MR1795487
  9. Čap A., Slovák J., Souček V., Invariant operators on manifolds with almost Hermitian symmetric structures, I. Invariant differentiation, Acta Math. Univ. Commenianae 66 (1997), 33-69, electronically available at www.emis.de. (1997) MR1474550
  10. Čap A., Slovák J., Souček V., Invariant operators on manifolds with almost Hermitian symmetric structures, II. Normal Cartan connections, Acta Math. Univ. Commenianae, 66 (1997), 203-220, electronically available at www.emis.de. (1997) MR1620484
  11. Čap, A., Slovák J., Souček V., Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard Operators, ESI Preprint 613, to appear in J. Differential Geom. Appl., electronically available at www.esi.ac.at. Zbl0969.53004MR1757020
  12. Eastwood M.G., On the weights of conformally invariant operators, Twistor Newsl. 24 (1987), 20-23. (1987) 
  13. Eastwood M.G., Slovák J., Semi-holonomic Verma modules, J. Algebra 197 (1997), 424-448. (1997) MR1483772
  14. Fegan H.D., Conformally invariant first order differential operators, Quart. J. Math. 27 (1976), 371-378. (1976) Zbl0334.58016MR0482879
  15. Fulton W., Harris J., Representation Theory - A First Course, Springer-Verlag (GTM), 1991. Zbl0744.22001MR1153249
  16. Garland H., Lepowsky J., Lie Algebra Homology and the Macdonald-Kac Formulae, Inv. Math. 34, Springer, 1976. MR0414645
  17. Gindikin S.G., Generalized conformal structures, Twistors in Mathematics and Physics, LMS Lecture Notes 156, Cambridge Univ. Press, 1990, pp.36-52. Zbl0788.22008MR1089908
  18. Goncharov A.B., Generalized conformal structures on manifolds, Selecta Math. Soviet. 6 (1987), 308-340. (1987) Zbl0632.53038MR0925263
  19. Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0447.17002MR0323842
  20. Jakobsen H.P., Conformal invariants, Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. (1986) MR0849262
  21. Jacobson N., Lie Algebras, Interscience Tracts, No. 10, 1962. Zbl0333.17009MR0143793
  22. Johnson K.D., Decomposition of Exterior Algebras, Contemp. Math. 191, AMS, 1995. Zbl0851.57040MR1365537
  23. Kobayashi S., Nagano T., On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964), 875-907. (1964) Zbl0142.19504MR0168704
  24. Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer, 1993. MR1202431
  25. Lepowsky J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra 49 (1977), 496-511. (1977) Zbl0381.17006MR0476813
  26. Sharpe R.W., Differential Geometry, Graduate Texts in Mathematics 166, Springer-Verlag, 1997. Zbl0876.53001MR1453120
  27. Slovák J., On the geometry of almost Hermitian symmetric structures, in Proceedings of the Conference Differential Geometry and Applications, 1995, Brno, Masaryk University, Brno (1996), pp.191-206, electronically available at www.emis.de. MR1406338
  28. Slovák J., Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au. 
  29. Verma D.N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160-166. (1968) Zbl0157.07604MR0218417
  30. Wünsch V., On conformally invariant differential operators, Math. Nachr. 129 (1986), 269-281. (1986) MR0864639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.