Steady-state buoyancy-driven viscous flow with measure data

Tomáš Roubíček

Mathematica Bohemica (2001)

  • Volume: 126, Issue: 2, page 493-504
  • ISSN: 0862-7959

Abstract

top
Steady-state system of equations for incompressible, possibly non-Newtonean of the p -power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain Ω n , n = 2 or 3, with heat sources allowed to have a natural L 1 -structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if p > 3 / 2 (for n = 2 ) or if p > 9 / 5 (for n = 3 ).

How to cite

top

Roubíček, Tomáš. "Steady-state buoyancy-driven viscous flow with measure data." Mathematica Bohemica 126.2 (2001): 493-504. <http://eudml.org/doc/248830>.

@article{Roubíček2001,
abstract = {Steady-state system of equations for incompressible, possibly non-Newtonean of the $p$-power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain $\Omega \subset \mathbb \{R\}^n$, $n=2$ or 3, with heat sources allowed to have a natural $L^1$-structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if $p>3/2$ (for $n=2$) or if $p>9/5$ (for $n=3$).},
author = {Roubíček, Tomáš},
journal = {Mathematica Bohemica},
keywords = {non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; viscous flow; existence of a distributional solution; small data},
language = {eng},
number = {2},
pages = {493-504},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Steady-state buoyancy-driven viscous flow with measure data},
url = {http://eudml.org/doc/248830},
volume = {126},
year = {2001},
}

TY - JOUR
AU - Roubíček, Tomáš
TI - Steady-state buoyancy-driven viscous flow with measure data
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 2
SP - 493
EP - 504
AB - Steady-state system of equations for incompressible, possibly non-Newtonean of the $p$-power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $n=2$ or 3, with heat sources allowed to have a natural $L^1$-structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if $p>3/2$ (for $n=2$) or if $p>9/5$ (for $n=3$).
LA - eng
KW - non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; viscous flow; existence of a distributional solution; small data
UR - http://eudml.org/doc/248830
ER -

References

top
  1. 10.1080/01630569708816758, Numer. Funct. Anal. Optim. 18 (1997), 235–250. (1997) MR1448889DOI10.1080/01630569708816758
  2. 10.1142/S0218202595000401, Math. Models Methods Appl. Sci. 5 (1995), 725–738. (1995) MR1348583DOI10.1142/S0218202595000401
  3. 10.1063/1.858275, Phys. Fluids A 4 (1992), 945–954. (1992) MR1160287DOI10.1063/1.858275
  4. 10.1016/S0362-546X(97)00392-1, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041–3049. (1997) MR1602949DOI10.1016/S0362-546X(97)00392-1
  5. Buoyancy-Induced Flows and Transport, Hemisphere Publ., Washington, 1988. (1988) 
  6. 10.32917/hmj/1206127712, Hiroshima Math. J. 25 (1995), 251–311. (1995) Zbl0843.35074MR1336900DOI10.32917/hmj/1206127712
  7. Natural convection with dissipative heating, (to appear). (to appear) MR1796023
  8. C 1 , α -solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem, Zapisky nauchnych seminarov POMI (Sankt Peterburg) 259 (1999), 89–121. (1999) 
  9. Fluid Mechanics, Pergamon Press, London, 1959. (1959) MR0108121
  10. Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
  11. Problèmes aux limites non homogènes, Dunod, Paris, 1968. (1968) 
  12. Weak and Measure-Valued Solutions to the Evolutionary PDE’s, Chapman & Hall, London, 1996. (1996) MR1409366
  13. 10.1007/BF00995132, Act. Appl. Math. 37 (1994), 83–98. (1994) DOI10.1007/BF00995132
  14. Kachestvenyje metody issledovaniya zadach konvekciĭ slabo szhimaemoĭ zhidkosti, Inst. Mat. NAN Ukraïni, Kiïv, 1998. (1998) MR1742952
  15. Les méthodes directes dans la théorie des équations elliptiques, Academia, Prague, 1967. (1967) 
  16. Buoyancy-driven viscous flow with L 1 -data, (to appear). (to appear) 
  17. 10.1007/BF00256457, Arch. Rational Mech. Anal. 29 (1968), 32–57. (1968) MR0233557DOI10.1007/BF00256457
  18. 10.1142/S0218202596000481, Math. Models Methods Appl. Sci. 6 (1996), 1157–1167. (1996) MR1428150DOI10.1142/S0218202596000481
  19. A steady-state Boussinesq-Stefan problem with continuous extraction, Annali Mat. Pura Appl. IV 144 (1986), 203–218. (1986) MR0870877
  20. On a three-dimensional convective Stefan problem for a non-Newtonian fluid, Nonlinear Applied Analysis, A. Sequiera et al. (eds.), Plenum Press, 1999, pp. 457–468. (1999) MR1727466
  21. Nonlinear heat equation with L 1 -data, Nonlinear Diff. Eq. Appl. 5 (1998), 517–527. (1998) 
  22. 10.1016/S0362-546X(97)00391-X, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029–3039. (1997) MR1602945DOI10.1016/S0362-546X(97)00391-X
  23. 10.1017/S0022112074002448, J. Fluid Mech. 64 (1974), 369–374. (1974) DOI10.1017/S0022112074002448

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.