Steady-state buoyancy-driven viscous flow with measure data
Mathematica Bohemica (2001)
- Volume: 126, Issue: 2, page 493-504
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRoubíček, Tomáš. "Steady-state buoyancy-driven viscous flow with measure data." Mathematica Bohemica 126.2 (2001): 493-504. <http://eudml.org/doc/248830>.
@article{Roubíček2001,
abstract = {Steady-state system of equations for incompressible, possibly non-Newtonean of the $p$-power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain $\Omega \subset \mathbb \{R\}^n$, $n=2$ or 3, with heat sources allowed to have a natural $L^1$-structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if $p>3/2$ (for $n=2$) or if $p>9/5$ (for $n=3$).},
author = {Roubíček, Tomáš},
journal = {Mathematica Bohemica},
keywords = {non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; viscous flow; existence of a distributional solution; small data},
language = {eng},
number = {2},
pages = {493-504},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Steady-state buoyancy-driven viscous flow with measure data},
url = {http://eudml.org/doc/248830},
volume = {126},
year = {2001},
}
TY - JOUR
AU - Roubíček, Tomáš
TI - Steady-state buoyancy-driven viscous flow with measure data
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 2
SP - 493
EP - 504
AB - Steady-state system of equations for incompressible, possibly non-Newtonean of the $p$-power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $n=2$ or 3, with heat sources allowed to have a natural $L^1$-structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if $p>3/2$ (for $n=2$) or if $p>9/5$ (for $n=3$).
LA - eng
KW - non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat; viscous flow; existence of a distributional solution; small data
UR - http://eudml.org/doc/248830
ER -
References
top- 10.1080/01630569708816758, Numer. Funct. Anal. Optim. 18 (1997), 235–250. (1997) MR1448889DOI10.1080/01630569708816758
- 10.1142/S0218202595000401, Math. Models Methods Appl. Sci. 5 (1995), 725–738. (1995) MR1348583DOI10.1142/S0218202595000401
- 10.1063/1.858275, Phys. Fluids A 4 (1992), 945–954. (1992) MR1160287DOI10.1063/1.858275
- 10.1016/S0362-546X(97)00392-1, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041–3049. (1997) MR1602949DOI10.1016/S0362-546X(97)00392-1
- Buoyancy-Induced Flows and Transport, Hemisphere Publ., Washington, 1988. (1988)
- 10.32917/hmj/1206127712, Hiroshima Math. J. 25 (1995), 251–311. (1995) Zbl0843.35074MR1336900DOI10.32917/hmj/1206127712
- Natural convection with dissipative heating, (to appear). (to appear) MR1796023
- -solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem, Zapisky nauchnych seminarov POMI (Sankt Peterburg) 259 (1999), 89–121. (1999)
- Fluid Mechanics, Pergamon Press, London, 1959. (1959) MR0108121
- Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
- Problèmes aux limites non homogènes, Dunod, Paris, 1968. (1968)
- Weak and Measure-Valued Solutions to the Evolutionary PDE’s, Chapman & Hall, London, 1996. (1996) MR1409366
- 10.1007/BF00995132, Act. Appl. Math. 37 (1994), 83–98. (1994) DOI10.1007/BF00995132
- Kachestvenyje metody issledovaniya zadach konvekciĭ slabo szhimaemoĭ zhidkosti, Inst. Mat. NAN Ukraïni, Kiïv, 1998. (1998) MR1742952
- Les méthodes directes dans la théorie des équations elliptiques, Academia, Prague, 1967. (1967)
- Buoyancy-driven viscous flow with -data, (to appear). (to appear)
- 10.1007/BF00256457, Arch. Rational Mech. Anal. 29 (1968), 32–57. (1968) MR0233557DOI10.1007/BF00256457
- 10.1142/S0218202596000481, Math. Models Methods Appl. Sci. 6 (1996), 1157–1167. (1996) MR1428150DOI10.1142/S0218202596000481
- A steady-state Boussinesq-Stefan problem with continuous extraction, Annali Mat. Pura Appl. IV 144 (1986), 203–218. (1986) MR0870877
- On a three-dimensional convective Stefan problem for a non-Newtonian fluid, Nonlinear Applied Analysis, A. Sequiera et al. (eds.), Plenum Press, 1999, pp. 457–468. (1999) MR1727466
- Nonlinear heat equation with -data, Nonlinear Diff. Eq. Appl. 5 (1998), 517–527. (1998)
- 10.1016/S0362-546X(97)00391-X, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029–3039. (1997) MR1602945DOI10.1016/S0362-546X(97)00391-X
- 10.1017/S0022112074002448, J. Fluid Mech. 64 (1974), 369–374. (1974) DOI10.1017/S0022112074002448
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.