Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component

Jiří Neustupa; Milan Pokorný

Mathematica Bohemica (2001)

  • Volume: 126, Issue: 2, page 469-481
  • ISSN: 0862-7959

Abstract

top
We study axisymmetric solutions to the Navier-Stokes equations in the whole three-dimensional space. We find conditions on the radial and angular components of the velocity field which are sufficient for proving the regularity of weak solutions.

How to cite

top

Neustupa, Jiří, and Pokorný, Milan. "Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component." Mathematica Bohemica 126.2 (2001): 469-481. <http://eudml.org/doc/248855>.

@article{Neustupa2001,
abstract = {We study axisymmetric solutions to the Navier-Stokes equations in the whole three-dimensional space. We find conditions on the radial and angular components of the velocity field which are sufficient for proving the regularity of weak solutions.},
author = {Neustupa, Jiří, Pokorný, Milan},
journal = {Mathematica Bohemica},
keywords = {axisymmetric flow; Navier-Stokes equations; regularity of systems of PDE’s; axisymmetric flow; Navier-Stokes equations; regularity of systems of PDE's},
language = {eng},
number = {2},
pages = {469-481},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component},
url = {http://eudml.org/doc/248855},
volume = {126},
year = {2001},
}

TY - JOUR
AU - Neustupa, Jiří
AU - Pokorný, Milan
TI - Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 2
SP - 469
EP - 481
AB - We study axisymmetric solutions to the Navier-Stokes equations in the whole three-dimensional space. We find conditions on the radial and angular components of the velocity field which are sufficient for proving the regularity of weak solutions.
LA - eng
KW - axisymmetric flow; Navier-Stokes equations; regularity of systems of PDE’s; axisymmetric flow; Navier-Stokes equations; regularity of systems of PDE's
UR - http://eudml.org/doc/248855
ER -

References

top
  1. An Introduction to the Navier-Stokes Initial Boundary Value Problem, Birhäuser Verlag, Topics in Mathematical Fluid Mechanics, Galdi G. P., Heywood J. G., Rannacher R. (eds.), to appear. (to appear) Zbl1108.35133MR1798753
  2. 10.1016/0022-0396(86)90096-3, J. of Diff. Equations 61 (1986), 186–212. (1986) Zbl0577.35058MR0833416DOI10.1016/0022-0396(86)90096-3
  3. Uniqueness and regularity of weak solutions to the Navier-Stokes equations, Lecture Notes Num. Appl. Anal vol. 16, 1998, pp. 161–208. (1998) Zbl0941.35065MR1616331
  4. 10.1524/anly.1996.16.3.255, Analysis 16 (1996), 255–271. (1996) MR1403221DOI10.1524/anly.1996.16.3.255
  5. On the unique global solvability of the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry, Zap. Nauch. Sem. LOMI 7 (1968), 155–177. (Russian) (1968) MR0241833
  6. 10.4171/ZAA/903, Z. Anal. Anwend. 18 (1999), 639–649. (1999) MR1718156DOI10.4171/ZAA/903
  7. 10.1007/BF02547354, Acta Math. 63 (1934), 193–248. (1934) MR1555394DOI10.1007/BF02547354
  8. A remark to the interior regularity of a suitable weak solution to the Navier-Stokes equation, Preprint University of Toulon-Var (1999). (1999) 
  9. Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Plenum Press, Nonlinear Applied Analysis, A. Sequeira, H. Beirao da Veiga, J. Videman (eds.), 1999, pp. 391–402. (1999) MR1727461
  10. On elliptic partial differential equations, Ann. Scuola Norm. 13 (1959), 115–162. (1959) Zbl0088.07601MR0109940
  11. Un teorema di unicità per el equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959), 173–182. (1959) MR0126088
  12. The initial value problem for the Navier-Stokes equations, University of Wisconsin Press, Nonlinear Problems, R. E. Langer (ed.), 1963, pp. 69–98. (1963) Zbl0115.08502MR0150444
  13. 10.1007/BF01174870, Manuscripta Math. 49 (1984), 27–59. (1984) MR0762786DOI10.1007/BF01174870
  14. 10.1016/0021-8928(68)90147-0, J. Appl. Math. Mech. 32 (1968), 52–61. (1968) MR0239293DOI10.1016/0021-8928(68)90147-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.