Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations
Applications of Mathematics (2022)
- Volume: 67, Issue: 4, page 485-507
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Zujin, and Tong, Chenxuan. "Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations." Applications of Mathematics 67.4 (2022): 485-507. <http://eudml.org/doc/298306>.
@article{Zhang2022,
abstract = {We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that \[ |\omega ^r(x,t)|+|\omega ^z(r,t)|\le \frac\{C\}\{r^\{10\}\},\quad 0<r\le \frac\{1\}\{2\}. \]
By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing $\omega ^r$, $\omega ^z$ and $\omega ^\theta /r$ on different hollow cylinders, we are able to improve it and obtain \[ |\omega ^r(x,t)|+|\omega ^z(r,t)|\le \frac\{C|\{\rm ln\} r|\}\{r^\{17/2\}\},\quad 0<r\le \frac\{1\}\{2\}. \]},
author = {Zhang, Zujin, Tong, Chenxuan},
journal = {Applications of Mathematics},
keywords = {axisymmetric Navier-Stokes equations; weighted a priori bounds},
language = {eng},
number = {4},
pages = {485-507},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations},
url = {http://eudml.org/doc/298306},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Zhang, Zujin
AU - Tong, Chenxuan
TI - Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 485
EP - 507
AB - We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that \[ |\omega ^r(x,t)|+|\omega ^z(r,t)|\le \frac{C}{r^{10}},\quad 0<r\le \frac{1}{2}. \]
By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing $\omega ^r$, $\omega ^z$ and $\omega ^\theta /r$ on different hollow cylinders, we are able to improve it and obtain \[ |\omega ^r(x,t)|+|\omega ^z(r,t)|\le \frac{C|{\rm ln} r|}{r^{17/2}},\quad 0<r\le \frac{1}{2}. \]
LA - eng
KW - axisymmetric Navier-Stokes equations; weighted a priori bounds
UR - http://eudml.org/doc/298306
ER -
References
top- Chae, D., Lee, J., 10.1007/s002090100317, Math. Z. 239 (2002), 645-671. (2002) Zbl0992.35068MR1902055DOI10.1007/s002090100317
- Chen, H., Fang, D., Zhang, T., 10.3934/dcds.2017081, Discrete Contin. Dyn. Syst. 37 (2017), 1923-1939. (2017) Zbl1364.35114MR3640581DOI10.3934/dcds.2017081
- Chen, Q., Zhang, Z., 10.1016/j.jmaa.2006.09.069, J. Math. Anal. Appl. 331 (2007), 1384-1395. (2007) Zbl1151.35067MR2313720DOI10.1016/j.jmaa.2006.09.069
- Gala, S., 10.1016/j.na.2010.09.026, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 775-782. (2011) Zbl1205.35194MR2738629DOI10.1016/j.na.2010.09.026
- Gallay, T., Šverák, V., 10.5802/cml.25, Confluentes Math. 7 (2015), 67-92. (2015) Zbl1356.35159MR4059266DOI10.5802/cml.25
- Hou, T. Y., Li, C., 10.3934/dcds.2005.12.1, Discrete Contin. Dyn. Syst. 12 (2005), 1-12. (2005) Zbl1274.76185MR2121245DOI10.3934/dcds.2005.12.1
- Kreml, O., Pokorný, M., A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations, Electron J. Differ. Equ. 2007 (2007), Article ID 08, 10 pages. (2007) Zbl1387.35456MR2278422
- Kubica, A., Pokorný, M., Zajączkowski, W., 10.1002/mma.1586, Math. Methods Appl. Sci. 35 (2012), 360-371. (2012) Zbl1236.35107MR2876817DOI10.1002/mma.1586
- Ladyzhenskaya, O. A., Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 7 (1968), 155-177 Russian. (1968) Zbl0195.10603MR0241833
- Lei, Z., Navas, E. A., Zhang, Q. S., 10.1007/s00220-015-2496-4, Commun. Math. Phys. 341 (2016), 289-307. (2016) Zbl1341.35102MR3439228DOI10.1007/s00220-015-2496-4
- Lei, Z., Zhang, Q. S., 10.1016/j.jfa.2011.06.016, J. Funct. Anal. 261 (2011), 2323-2345. (2011) Zbl1244.35105MR2824580DOI10.1016/j.jfa.2011.06.016
- Lei, Z., Zhang, Q. S., 10.2140/pjm.2017.289.169, Pac. J. Math. 289 (2017), 169-187. (2017) Zbl06722850MR3652459DOI10.2140/pjm.2017.289.169
- Leonardi, S., Málek, J., Nečas, J., Pokorný, M., 10.4171/ZAA/903, Z. Anal. Anwend. 18 (1999), 639-649. (1999) Zbl0943.35066MR1718156DOI10.4171/ZAA/903
- Loftus, J. B., Zhang, Q. S., A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations, Adv. Differ. Equ. 15 (2010), 531-560. (2010) Zbl1195.35240MR2643234
- Neustupa, J., Pokorný, M., 10.21136/MB.2001.134015, Math. Bohem. 126 (2001), 469-481. (2001) Zbl0981.35046MR1844284DOI10.21136/MB.2001.134015
- Pokorný, M., 10.1142/9789812777201_0022, Elliptic and Parabolic Problems World Scientific, Singapore (2002), 233-242. (2002) Zbl1033.35085MR1937543DOI10.1142/9789812777201_0022
- Renc{ł}awowicz, J., Zajączkowski, W. M., 10.1007/s00021-019-0447-0, J. Math. Fluid Mech. 21 (2019), Article ID 51, 14 pages. (2019) Zbl1448.76055MR4010661DOI10.1007/s00021-019-0447-0
- Uhkovskii, M. R., Iudovich, V. I., 10.1016/0021-8928(68)90147-0, J. Appl. Math. Mech. 32 (1968), 52-62. (1968) Zbl0172.53405MR0239293DOI10.1016/0021-8928(68)90147-0
- Wei, D., 10.1016/j.jmaa.2015.09.088, J. Math. Anal. Appl. 435 (2016), 402-413. (2016) Zbl1330.35298MR3423404DOI10.1016/j.jmaa.2015.09.088
- Zhang, P., Zhang, T., 10.1093/imrn/rns232, Int. Math. Res. Not. 2014 (2014), 610-642. (2014) Zbl07357636MR3163561DOI10.1093/imrn/rns232
- Zhang, Z., 10.4064/ap3856-3-2016, Ann. Pol. Math. 117 (2016), 181-196. (2016) Zbl1359.35163MR3539076DOI10.4064/ap3856-3-2016
- Zhang, Z., 10.1016/j.amc.2016.10.001, Appl. Math. Comput. 296 (2017), 18-22. (2017) Zbl1411.35222MR3572774DOI10.1016/j.amc.2016.10.001
- Zhang, Z., 10.1016/j.jmaa.2017.12.069, J. Math. Anal. Appl. 461 (2018), 1-6. (2018) Zbl1390.35239MR3759525DOI10.1016/j.jmaa.2017.12.069
- Zhang, Z., 10.1016/j.camwa.2018.06.035, Comput. Math. Appl. 76 (2018), 1420-1426. (2018) Zbl1434.35072MR3850659DOI10.1016/j.camwa.2018.06.035
- Zhang, Z., 10.1016/j.aml.2019.01.022, Appl. Math. Lett. 92 (2019), 139-143. (2019) Zbl1417.35098MR3903956DOI10.1016/j.aml.2019.01.022
- Zhang, Z., Ouyang, X., Yang, X., 10.11948/2017034, J. Appl. Anal. Comput. 7 (2017), 554-558. (2017) Zbl07309521MR3602437DOI10.11948/2017034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.