Polynomial growth of sumsets in abelian semigroups
Melvyn B. Nathanson; Imre Z. Ruzsa
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 2, page 553-560
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNathanson, Melvyn B., and Ruzsa, Imre Z.. "Polynomial growth of sumsets in abelian semigroups." Journal de théorie des nombres de Bordeaux 14.2 (2002): 553-560. <http://eudml.org/doc/248890>.
@article{Nathanson2002,
abstract = {Let $S$ be an abelian semigroup, and $A$ a finite subset of $S$. The sumset $hA$ consists of all sums of $h$ elements of $A$, with repetitions allowed. Let $|hA|$ denote the cardinality of $hA$. Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial $p(t)$ such that $|hA| = p(h)$ for all sufficiently large $h$. Lattice point counting is also used to prove that sumsets of the form $h_1 A_1 + \cdots + h_r A_r$ have multivariate polynomial growth.},
author = {Nathanson, Melvyn B., Ruzsa, Imre Z.},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {553-560},
publisher = {Université Bordeaux I},
title = {Polynomial growth of sumsets in abelian semigroups},
url = {http://eudml.org/doc/248890},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Nathanson, Melvyn B.
AU - Ruzsa, Imre Z.
TI - Polynomial growth of sumsets in abelian semigroups
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 553
EP - 560
AB - Let $S$ be an abelian semigroup, and $A$ a finite subset of $S$. The sumset $hA$ consists of all sums of $h$ elements of $A$, with repetitions allowed. Let $|hA|$ denote the cardinality of $hA$. Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial $p(t)$ such that $|hA| = p(h)$ for all sufficiently large $h$. Lattice point counting is also used to prove that sumsets of the form $h_1 A_1 + \cdots + h_r A_r$ have multivariate polynomial growth.
LA - eng
UR - http://eudml.org/doc/248890
ER -
References
top- [1] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms. Springer-Verlag, New York, 2nd edition, 1997. Zbl0861.13012MR1417938
- [2] S. Han, C. Kirfel, M.B. Nathanson, Linear forms in finite sets of integers. Ramanujan J.2 (1998), 271-281. Zbl0911.11008MR1642882
- [3] A.G. Khovanskii, Newton polyhedron, Hilbert polynomial, and sums of finite sets. Functional. Anal. Appl.26 (1992), 276-281. Zbl0809.13012MR1209944
- [4] A.G. Khovanskii, Sums of finite sets, orbits of commutative semigroups, and Hilbert functions. Functional. Anal. Appl.29 (1995), 102-112. Zbl0855.13011MR1340302
- [5] M.B. Nathanson, Sums of finite sets of integers. Amer. Math. Monthly79 (1972), 1010-1012. Zbl0251.10002MR304305
- [6] M.B. Nathanson, Growth of sumsets in abelian semigroups. Semigroup Forum61 (2000), 149-153. Zbl0959.20055MR1839220
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.