Prime geodesic theorem
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 59-72
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCai, Yingchun. "Prime geodesic theorem." Journal de théorie des nombres de Bordeaux 14.1 (2002): 59-72. <http://eudml.org/doc/248896>.
@article{Cai2002,
abstract = {Let $\Gamma $ denote the modular group $PSL(2, Z)$. In this paper it is proved that $\pi _\Gamma (x) = \text\{li\} x + O(x^\{\frac\{71\}\{102\} + \epsilon \}), \epsilon > 0$. The exponent $\frac\{71\}\{102\}$ improves the exponent $\frac\{7\}\{10\}$ obtained by W. Z. Luo and P. Sarnak.},
author = {Cai, Yingchun},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {prime geodesic theorem; modular group},
language = {eng},
number = {1},
pages = {59-72},
publisher = {Université Bordeaux I},
title = {Prime geodesic theorem},
url = {http://eudml.org/doc/248896},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Cai, Yingchun
TI - Prime geodesic theorem
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 59
EP - 72
AB - Let $\Gamma $ denote the modular group $PSL(2, Z)$. In this paper it is proved that $\pi _\Gamma (x) = \text{li} x + O(x^{\frac{71}{102} + \epsilon }), \epsilon > 0$. The exponent $\frac{71}{102}$ improves the exponent $\frac{7}{10}$ obtained by W. Z. Luo and P. Sarnak.
LA - eng
KW - prime geodesic theorem; modular group
UR - http://eudml.org/doc/248896
ER -
References
top- [1] D. Burgess, The character sums estimate with r = 3. J. London. Math. Soc.(2) 33 (1986), 219-226. Zbl0593.10033MR838632
- [2] D. Hejhal, The Selberg Trace Formula for PSL(2, R), I. Lecture Notes in Math.548, Berlin- New York, 1976. Zbl0347.10018
- [3] D. Hejhal, The Selberg Trace Formula and the Riemann Zeta-function. Duke Math. J.43 (1976), 441-482. Zbl0346.10010MR414490
- [4] H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II. Math. Ann.142 (1961), 385-398 and 143 (1961), 463-464. Zbl0101.05702MR154980
- [5] H. Iwaniec, Prime geodesic theorem. J. Reine Angew. Math.349 (1984), 136-159. Zbl0527.10021MR743969
- [6] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms. Biblioteca de la Revista Matemática Iberoamericana, 1995 Zbl0847.11028MR1325466
- [7] N.V. Kuznetzov, An arithmetical form of the Selberg Trace formula and the distribution of the norms of primitive hyperbolic classes of the modular group. Akad. Nauk. SSSR., Khabarovsk, 1978. Zbl0381.10022
- [8] N.V. Kuznetzov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums (Russian). Mat. Sb. (N.S.)111(153) (1980), no. 3, 334-383, 479. Zbl0427.10016MR568983
- [9] Z. Luo, P. Sarnak, Quantum ergodicity of eigenfunctions on PSL2(Z). Inst. Hautes. Etudes Sci. Publ. Math.81 (1995), 207-237. Zbl0852.11024
- [10] Z. Luo, Z. Rudnick, P. Sarnak, On Selberg's eigenvalue Conjecture. Geom. Funct. Anal.5 (1995), 387-401. Zbl0844.11038MR1334872
- [11] R.A. Rankin, Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions. Proc. Cambridge. Phil. Soc.35 (1939), 351—372. Zbl0021.39201
- [12] P. Sarnak, Class number of infinitely binary quadratic forms. J. Number Theory15 (1982), 229-247. Zbl0499.10021MR675187
- [13] A.B. Venkov, Spectral theory of automorphic functions, (in Russian). Trudy Math. Inst. Steklova153 (1981), 1-171. Zbl0483.10029MR665585
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.