Prime geodesic theorem
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 59-72
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Burgess, The character sums estimate with r = 3. J. London. Math. Soc.(2) 33 (1986), 219-226. Zbl0593.10033MR838632
- [2] D. Hejhal, The Selberg Trace Formula for PSL(2, R), I. Lecture Notes in Math.548, Berlin- New York, 1976. Zbl0347.10018
- [3] D. Hejhal, The Selberg Trace Formula and the Riemann Zeta-function. Duke Math. J.43 (1976), 441-482. Zbl0346.10010MR414490
- [4] H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II. Math. Ann.142 (1961), 385-398 and 143 (1961), 463-464. Zbl0101.05702MR154980
- [5] H. Iwaniec, Prime geodesic theorem. J. Reine Angew. Math.349 (1984), 136-159. Zbl0527.10021MR743969
- [6] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms. Biblioteca de la Revista Matemática Iberoamericana, 1995 Zbl0847.11028MR1325466
- [7] N.V. Kuznetzov, An arithmetical form of the Selberg Trace formula and the distribution of the norms of primitive hyperbolic classes of the modular group. Akad. Nauk. SSSR., Khabarovsk, 1978. Zbl0381.10022
- [8] N.V. Kuznetzov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums (Russian). Mat. Sb. (N.S.)111(153) (1980), no. 3, 334-383, 479. Zbl0427.10016MR568983
- [9] Z. Luo, P. Sarnak, Quantum ergodicity of eigenfunctions on PSL2(Z). Inst. Hautes. Etudes Sci. Publ. Math.81 (1995), 207-237. Zbl0852.11024
- [10] Z. Luo, Z. Rudnick, P. Sarnak, On Selberg's eigenvalue Conjecture. Geom. Funct. Anal.5 (1995), 387-401. Zbl0844.11038MR1334872
- [11] R.A. Rankin, Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions. Proc. Cambridge. Phil. Soc.35 (1939), 351—372. Zbl0021.39201
- [12] P. Sarnak, Class number of infinitely binary quadratic forms. J. Number Theory15 (1982), 229-247. Zbl0499.10021MR675187
- [13] A.B. Venkov, Spectral theory of automorphic functions, (in Russian). Trudy Math. Inst. Steklova153 (1981), 1-171. Zbl0483.10029MR665585