Quantum ergodicity of Eigenfunctions on P S L 2 ( 𝐙 ) / 𝐇 2

Wenzhi Luo; Peter Sarnak

Publications Mathématiques de l'IHÉS (1995)

  • Volume: 81, page 207-237
  • ISSN: 0073-8301

How to cite


Luo, Wenzhi, and Sarnak, Peter. "Quantum ergodicity of Eigenfunctions on $PSL_2(\mathbf {Z})/\mathbf {H}^2$." Publications Mathématiques de l'IHÉS 81 (1995): 207-237. <http://eudml.org/doc/104103>.

author = {Luo, Wenzhi, Sarnak, Peter},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {quantum ergodicity of eigenfunctions; Maass cusp form; Eisenstein series; prime geodesic theorem; modular forms; -functions; Fourier coefficients},
language = {eng},
pages = {207-237},
publisher = {Institut des Hautes Études Scientifiques},
title = {Quantum ergodicity of Eigenfunctions on $PSL_2(\mathbf \{Z\})/\mathbf \{H\}^2$},
url = {http://eudml.org/doc/104103},
volume = {81},
year = {1995},

AU - Luo, Wenzhi
AU - Sarnak, Peter
TI - Quantum ergodicity of Eigenfunctions on $PSL_2(\mathbf {Z})/\mathbf {H}^2$
JO - Publications Mathématiques de l'IHÉS
PY - 1995
PB - Institut des Hautes Études Scientifiques
VL - 81
SP - 207
EP - 237
LA - eng
KW - quantum ergodicity of eigenfunctions; Maass cusp form; Eisenstein series; prime geodesic theorem; modular forms; -functions; Fourier coefficients
UR - http://eudml.org/doc/104103
ER -


  1. [CD] Y. COLIN DE VERDIÈRE, Ergodicité et fonctions propres du laplacien, Com. Math. Phys., 102 (1985), 497-502. Zbl0592.58050MR87d:58145
  2. [D-I1] J.-M DESHOUILLERS, H. IWANIEC, Kloosterman sum and Fourier coefficients of cusp forms, Invent. Math., 70 (1982), 219-288. Zbl0502.10021MR84m:10015
  3. [D-12] J.-M. DESHOUILLERS, H. IWANIEC, The non-vanishing of Rankin-Selberg zeta-functions at special points, Selberg trace formula and related topics, Contemp. Math., 53, Amer. Math. Soc., Providence, RI, 1986, 59-95. Zbl0595.10025MR88d:11047
  4. [ER] A. ERDÉLYI et al., Higher Transcendental Functions, vol. 2, McGraw-Hill, 1953. Zbl0051.30303MR15,419i
  5. [G-R] I. S. GRADSHTEIN, I. M. RYZHIK, Tables of Integrals, Series and Products, Academic Press, New York and London, 1965. 
  6. [H1] D. A. HEJHAL, The Selberg Trace Formula for PSL(2, R), Vol. 1, Springer Lecture Notes, 548, Springer-Verlag, 1976. Zbl0347.10018MR55 #12641
  7. [H2] D. A. HEJHAL, The Selberg Trace Formula for PSL(2, R), Vol. 2, Springer Lecture Notes, 1001, Springer-Verlag, 1983. Zbl0543.10020MR86e:11040
  8. [H3] D. A. HEJHAL, Eigenvalues for the Laplacian for Hecke triangle groups, Memoirs of AMS, Vol. 469, 1992. Zbl0746.11025
  9. [H-R] D. A. HEJHAL, D. RACKNER, On the topography of Maass wave forms, Exper. Math., 1 (1992), 275-305. Zbl0813.11035
  10. [HN-L] J. HOFFSTEIN, P. LOCKHART, Coefficients of Maass forms and the Siegel zero, appendix by D. Goldfeld, J. Hoffstein, D. Lieman, An affective zero free region, Annals of Math., 140 (1994), 161-181. Zbl0814.11032MR95m:11048
  11. [I1] H. IWANIEC, Prime geodesic theorem, J. Reine Angew. Math., 349 (1984), 136-159. Zbl0527.10021MR85h:11025
  12. [12] H. IWANIEC, Small eigenvalues for Γ0(N), Acta Arith., LVI (1990), 65-82. Zbl0702.11034MR92h:11045
  13. [13] H. IWANIEC, The spectral growth of automorphic L-functions, J. Reine Angew. Math., 428 (1992), 139-159. Zbl0746.11024MR93g:11049
  14. [I-S] H. IWANIEC, H. SARNAK, L∞ norms of eigenfunctions of arithmetic surfaces, To appear in Annals of Math. Zbl0833.11019
  15. [14] H. IWANIEC, Non-holomorphic modular forms and their applications, Modular forms, Durham conference, edited by R. Rankin, 1984, 157-196. Zbl0558.10018MR87f:11030
  16. [J] D. JAKOBSON, Quantum ergodicity for Eisenstein series on PSL2(Z)2(R), Preprint, Princeton, 1994. Zbl0820.11040MR96b:11068
  17. [K-N] L. KUIPERS, H. NIEDERREITER, Uniform distribution of sequences, New York, Wiley, 1974. Zbl0281.10001MR54 #7415
  18. [KU] N. V. KUZNETSOV, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture, Sums of Kloosterman sums, Mat. Sb., 111 (1980), 334-383. Zbl0427.10016MR81m:10053
  19. [MEU] T. MEURMAN, On the order of the Maass L-function on the critical line, Number Theory, Vol. I, Budapest, 1987, Colloq. Math. Soc. Janos Bolyai, 51 (1990), 325-354. Zbl0724.11029MR91m:11037
  20. [RA] S. RAMANUJAN, Some formulae in the arithmetic theory of numbers, Messenger of Math., 45 (1916), 81-84. JFM45.1250.01
  21. [RAN] B. RANDOL, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. AMS, 233 (1977), 241-247. Zbl0329.30009MR58 #2643
  22. [R-S] Z. RUDNICK, P. SARNAK, The behavior of eigenstates of arithmetic hyperbolic manifolds, Com. Math. Phys., 161 (1994), 195-213. Zbl0836.58043MR95m:11052
  23. [SA1] P. SARNAK, Arithmetic quantum chaos, The RA Blyth Lecture, University of Toronto, 1993. 
  24. [SA2] P. SARNAK, Some Applications of modular forms, Cambridge Univ. Press, 1990. Zbl0721.11015MR92k:11045
  25. [SE] A. SELBERG, Collected Papers, Vol. 1, Springer-Verlag, 1989, 626-674. Zbl0675.10001MR92h:01083
  26. [SH] A. I. SCHNIRELMAN, Ergodic properties of eigenfunctions, Usp. Math. Nauk., 29 (1974), 181-182. MR53 #6648
  27. [SHI] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3), 31 (1975), 79-98. Zbl0311.10029MR52 #3064
  28. [ST] G. STEIL, Über die Eigenwerte des Laplace Operators und die Hecke Operatoren für SL(2, Z), preprint, 1993. 
  29. [T] E. C. TITCHMARSH, The Theory of the Riemann Zeta Function, Oxford, 1951. Zbl0042.07901MR13,741c
  30. [W] A. WEIL, On some exponential sums, Proc. Nat. Acad. Sci. USA, 34 (1948), 204-207. Zbl0032.26102MR10,234e
  31. [Z1] S. ZELDITCH, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. Jnl., 55 (1987), 919-941. Zbl0643.58029MR89d:58129
  32. [Z2] S. ZELDITCH, Selberg trace formulae and equidistribution theorems, Memoirs of AMS, Vol. 96, No. 465, 1992. Zbl0753.11023MR93a:11047

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.