Zero-sumfree sequences in cyclic groups and some arithmetical application

Alfred Geroldinger; Yahya Ould Hamidoune

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 221-239
  • ISSN: 1246-7405

Abstract

top
We show that in a cyclic group with n elements every zero-sumfree sequence S with length | S | n + 1 2 contains some element of order n with high multiplicity.

How to cite

top

Geroldinger, Alfred, and Hamidoune, Yahya Ould. "Zero-sumfree sequences in cyclic groups and some arithmetical application." Journal de théorie des nombres de Bordeaux 14.1 (2002): 221-239. <http://eudml.org/doc/248919>.

@article{Geroldinger2002,
abstract = {We show that in a cyclic group with $n$ elements every zero-sumfree sequence $S$ with length $|S| \ge \frac\{n+1\}\{ 2\}$ contains some element of order $n$ with high multiplicity.},
author = {Geroldinger, Alfred, Hamidoune, Yahya Ould},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {zero-sum free sequences; cyclic groups; factorization in Krull monoids},
language = {eng},
number = {1},
pages = {221-239},
publisher = {Université Bordeaux I},
title = {Zero-sumfree sequences in cyclic groups and some arithmetical application},
url = {http://eudml.org/doc/248919},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Geroldinger, Alfred
AU - Hamidoune, Yahya Ould
TI - Zero-sumfree sequences in cyclic groups and some arithmetical application
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 221
EP - 239
AB - We show that in a cyclic group with $n$ elements every zero-sumfree sequence $S$ with length $|S| \ge \frac{n+1}{ 2}$ contains some element of order $n$ with high multiplicity.
LA - eng
KW - zero-sum free sequences; cyclic groups; factorization in Krull monoids
UR - http://eudml.org/doc/248919
ER -

References

top
  1. [And97] Factorization in integral domains. (Editeur Daniel D. Anderson). Lecture Notes in Pure and Applied Mathematics189, Marcel Dekker, Inc., New York, 1997. 
  2. [BEN75] J.D. Bovey, P. Erdös, I. Niven, Conditions for zero sum modulo n. Canad. Math. Bull.18 (1975), 27-29. Zbl0314.10040MR392901
  3. [CG97] S. Chapman, A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems. In Factorization in integral domains, 73-112, Lecture Notes in Pure and Appl. Math.189, Marcel Dekker, New York, 1997. Zbl0897.13001MR1460769
  4. [EE72] R.B. Eggleton, P. Erdös, Two combinatorial problems in group theory. Acta Arith.21 (1972), 111-116. Zbl0248.20068MR304508
  5. [Ger87] A. Geroldinger, On non-unique factorizations into irreducible elements II. Number theory, Vol. II (Budapest, 1987), 723-757, Colloq. Math. Soc. János Bolyai51, North-Holland, Amsterdam, 1990. Zbl0703.11057MR1058242
  6. [Ger88] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z.197 (1988), 505-529. Zbl0618.12002MR932683
  7. [GG98] W. Gao, A. Geroldinger, On the structure of zerofree sequences. Combinatorica18 (1998), 519-527. Zbl0968.11016MR1722257
  8. [GG99] W. Gao, A. Geroldinger, On long minimal zero sequences in finite abelian groups. Period. Math. Hungar.38 (1999), 179-211. Zbl0980.11014MR1756238
  9. [GG00] W. Gao, A. Geroldinger, Systems of sets of lengths II. Abh. Math. Sem. Univ. Hamburg70 (2000), 31-49. Zbl1036.11054MR1809532
  10. [MS55] L. Moser, P. Scherk, Distinct elements in a set of sums. Amer. Math. Monthly62 (1955), 46-47. MR1528921

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.