Differences in sets of lengths of Krull monoids with finite class group
- [1] Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 323-345
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSchmid, Wolfgang A.. "Differences in sets of lengths of Krull monoids with finite class group." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 323-345. <http://eudml.org/doc/249454>.
@article{Schmid2005,
abstract = {Let $H$ be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary $p$-groups have the same system of sets of lengths if and only if they are isomorphic.},
affiliation = {Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria},
author = {Schmid, Wolfgang A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {lengths of factorizations; Krull monoids; finite Abelian groups; products of minimal elements; half-factorial sets},
language = {eng},
number = {1},
pages = {323-345},
publisher = {Université Bordeaux 1},
title = {Differences in sets of lengths of Krull monoids with finite class group},
url = {http://eudml.org/doc/249454},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Schmid, Wolfgang A.
TI - Differences in sets of lengths of Krull monoids with finite class group
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 323
EP - 345
AB - Let $H$ be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary $p$-groups have the same system of sets of lengths if and only if they are isomorphic.
LA - eng
KW - lengths of factorizations; Krull monoids; finite Abelian groups; products of minimal elements; half-factorial sets
UR - http://eudml.org/doc/249454
ER -
References
top- D.D. Anderson, (editor), Factorization in integral domains. Lecture Notes in Pure and Applied Mathematics 189, Marcel Dekker Inc., New York, 1997. Zbl0865.00039MR1460766
- D.F. Anderson, Elasticity of factorizations in integral domains: a survey. In [1], 1–29. Zbl0773.13003MR1460767
- L. Carlitz, A characterization of algebraic number fields with class number two. Proc. Amer. Math. Soc. 11 (1960), 391–392. Zbl0202.33101MR111741
- S. Chapman, A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems. In [1], 73–112. Zbl0897.13001MR1460769
- P. van Emde Boas, A combinatorial problem on finite abelian groups II. Report ZW-1969-007, Math. Centre, Amsterdam (1969), 60p. Zbl0203.32703MR255672
- W. Gao, A. Geroldinger, Half-factorial domains and half-factorial subsets in abelian groups. Houston J. Math. 24 (1998), 593–611. Zbl0994.20046MR1686626
- W. Gao, A. Geroldinger, Systems of sets of lengths II. Abh. Math. Sem. Univ. Hamburg 70 (2000), 31–49. Zbl1036.11054MR1809532
- A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. Zbl0618.12002MR932683
- A. Geroldinger, Systeme von Längenmengen. Abh. Math. Sem. Univ. Hamburg 60 (1990), 115–130. Zbl0721.11042MR1087122
- A. Geroldinger, On nonunique factorizations into irreducible elements. II. Colloq. Math. Soc. János Bolyai 51, North-Holland, Amsterdam, 1990, 723–757. Zbl0703.11057MR1058242
- A. Geroldinger, The cross number of finite abelian groups. J. Number Theory 48 (1994), 219–223. Zbl0814.20033MR1285540
- A. Geroldinger, A structure theorem for sets of lengths. Colloq. Math. 78 (1998), 225–259. Zbl0926.11082MR1659136
- A. Geroldinger, Y. ould Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical application. Journal Théor. Nombres Bordeaux 14 (2002), 221–239. Zbl1018.11011MR1925999
- A. Geroldinger, G. Lettl, Factorization problems in semigroups. Semigroup Forum 40 (1990), 23–38. Zbl0693.20063MR1014223
- A. Geroldinger, R. Schneider, The cross number of finite abelian groups III. Discrete Math. 150 (1996), 123–130. Zbl0848.20048MR1392725
- F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. Zbl0844.11068MR1378586
- F. Halter-Koch, Finitely generated monoids, finitely primary monoids and factorization properties of integral domains. In [1], 31–72. Zbl0882.13027MR1460768
- F. Halter-Koch, Ideal Systems. Marcel Dekker Inc., New York, 1998. Zbl0953.13001MR1828371
- U. Krause, A characterization of algebraic number fields with cyclic class group of prime power order. Math. Z. 186 (1984), 143–148. Zbl0522.12006MR741299
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. Zbl1159.11039MR1055830
- J.E. Olson, A combinatorial problem on finite abelian groups, I,. J. Number Theory 1 (1969), 8–10. Zbl0169.02003MR237641
- W.A. Schmid, Arithmetic of block monoids. Math. Slovaca 54 (2004), 503–526. Zbl1108.11084MR2114621
- W.A. Schmid, Half-factorial sets in elementary -groups. Far East J. Math. Sci. (FJMS), to appear. Zbl1120.20055MR2255073
- L. Skula, On c-semigroups. Acta Arith. 31 (1976), 247–257. Zbl0303.13014MR444817
- J. Śliwa, Factorizations of distinct length in algebraic number fields. Acta Arith. 31 (1976), 399–417. Zbl0347.12005MR429830
- J. Śliwa, Remarks on factorizations in algebraic number fields. Colloq. Math. 46 (1982), 123–130. Zbl0514.12005MR672372
- A. Zaks, Half factorial domains. Bull. Amer. Math. Soc. 82 (1976), 721–723. Zbl0338.13020MR407001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.