Differences in sets of lengths of Krull monoids with finite class group

Wolfgang A. Schmid[1]

  • [1] Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 323-345
  • ISSN: 1246-7405

Abstract

top
Let H be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary p -groups have the same system of sets of lengths if and only if they are isomorphic.

How to cite

top

Schmid, Wolfgang A.. "Differences in sets of lengths of Krull monoids with finite class group." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 323-345. <http://eudml.org/doc/249454>.

@article{Schmid2005,
abstract = {Let $H$ be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary $p$-groups have the same system of sets of lengths if and only if they are isomorphic.},
affiliation = {Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria},
author = {Schmid, Wolfgang A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {lengths of factorizations; Krull monoids; finite Abelian groups; products of minimal elements; half-factorial sets},
language = {eng},
number = {1},
pages = {323-345},
publisher = {Université Bordeaux 1},
title = {Differences in sets of lengths of Krull monoids with finite class group},
url = {http://eudml.org/doc/249454},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Schmid, Wolfgang A.
TI - Differences in sets of lengths of Krull monoids with finite class group
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 323
EP - 345
AB - Let $H$ be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary $p$-groups have the same system of sets of lengths if and only if they are isomorphic.
LA - eng
KW - lengths of factorizations; Krull monoids; finite Abelian groups; products of minimal elements; half-factorial sets
UR - http://eudml.org/doc/249454
ER -

References

top
  1. D.D. Anderson, (editor), Factorization in integral domains. Lecture Notes in Pure and Applied Mathematics 189, Marcel Dekker Inc., New York, 1997. Zbl0865.00039MR1460766
  2. D.F. Anderson, Elasticity of factorizations in integral domains: a survey. In [1], 1–29. Zbl0773.13003MR1460767
  3. L. Carlitz, A characterization of algebraic number fields with class number two. Proc. Amer. Math. Soc. 11 (1960), 391–392. Zbl0202.33101MR111741
  4. S. Chapman, A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems. In [1], 73–112. Zbl0897.13001MR1460769
  5. P. van Emde Boas, A combinatorial problem on finite abelian groups II. Report ZW-1969-007, Math. Centre, Amsterdam (1969), 60p. Zbl0203.32703MR255672
  6. W. Gao, A. Geroldinger, Half-factorial domains and half-factorial subsets in abelian groups. Houston J. Math. 24 (1998), 593–611. Zbl0994.20046MR1686626
  7. W. Gao, A. Geroldinger, Systems of sets of lengths II. Abh. Math. Sem. Univ. Hamburg 70 (2000), 31–49. Zbl1036.11054MR1809532
  8. A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. Zbl0618.12002MR932683
  9. A. Geroldinger, Systeme von Längenmengen. Abh. Math. Sem. Univ. Hamburg 60 (1990), 115–130. Zbl0721.11042MR1087122
  10. A. Geroldinger, On nonunique factorizations into irreducible elements. II. Colloq. Math. Soc. János Bolyai 51, North-Holland, Amsterdam, 1990, 723–757. Zbl0703.11057MR1058242
  11. A. Geroldinger, The cross number of finite abelian groups. J. Number Theory 48 (1994), 219–223. Zbl0814.20033MR1285540
  12. A. Geroldinger, A structure theorem for sets of lengths. Colloq. Math. 78 (1998), 225–259. Zbl0926.11082MR1659136
  13. A. Geroldinger, Y. ould Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical application. Journal Théor. Nombres Bordeaux 14 (2002), 221–239. Zbl1018.11011MR1925999
  14. A. Geroldinger, G. Lettl, Factorization problems in semigroups. Semigroup Forum 40 (1990), 23–38. Zbl0693.20063MR1014223
  15. A. Geroldinger, R. Schneider, The cross number of finite abelian groups III. Discrete Math. 150 (1996), 123–130. Zbl0848.20048MR1392725
  16. F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. Zbl0844.11068MR1378586
  17. F. Halter-Koch, Finitely generated monoids, finitely primary monoids and factorization properties of integral domains. In [1], 31–72. Zbl0882.13027MR1460768
  18. F. Halter-Koch, Ideal Systems. Marcel Dekker Inc., New York, 1998. Zbl0953.13001MR1828371
  19. U. Krause, A characterization of algebraic number fields with cyclic class group of prime power order. Math. Z. 186 (1984), 143–148. Zbl0522.12006MR741299
  20. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. Zbl1159.11039MR1055830
  21. J.E. Olson, A combinatorial problem on finite abelian groups, I,. J. Number Theory 1 (1969), 8–10. Zbl0169.02003MR237641
  22. W.A. Schmid, Arithmetic of block monoids. Math. Slovaca 54 (2004), 503–526. Zbl1108.11084MR2114621
  23. W.A. Schmid, Half-factorial sets in elementary p -groups. Far East J. Math. Sci. (FJMS), to appear. Zbl1120.20055MR2255073
  24. L. Skula, On c-semigroups. Acta Arith. 31 (1976), 247–257. Zbl0303.13014MR444817
  25. J. Śliwa, Factorizations of distinct length in algebraic number fields. Acta Arith. 31 (1976), 399–417. Zbl0347.12005MR429830
  26. J. Śliwa, Remarks on factorizations in algebraic number fields. Colloq. Math. 46 (1982), 123–130. Zbl0514.12005MR672372
  27. A. Zaks, Half factorial domains. Bull. Amer. Math. Soc. 82 (1976), 721–723. Zbl0338.13020MR407001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.