Bases normales relatives en caractéristique positive
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 1-17
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Anglès, On the orthogonal of cyclotomic units in positive characteristic. J. Number Theory79 (1999), 258-283. Zbl1001.11046MR1728150
- [2] J. Brinkhuis, Galois modules and embedding problems. J. Reine Ang. Math, 346 (1984), 141-164. Zbl0525.12008MR727401
- [3] J. Brinkhuis, Normal integral bases and complex conjugation. J. Reine Ang. Math375/376 (1987), 157-166. Zbl0609.12009MR882295
- [4] R.J. Chapman, Carlitz modules and normal integral bases. J. London Math. Soc.44 (1991), 250-260. Zbl0749.11049MR1136438
- [5] J. Cougnard, Bases normales relatives dans certaines extensions cyclotomiques. J. Number Theory23 (1986), 336-346. Zbl0588.12003MR846963
- [6] J. Cougnard, Nouveaux exemples d'extensions relatives sans base normale. preprint 2001.
- [7] A. Fröhlich, Galois module sructure of algebraic integers. Springer-Verlag, 1983. Zbl0501.12012MR717033
- [8] D. Goss, Basic structures of function field arithmetic. Springer-Verlag, 1996. Zbl0874.11004MR1423131
- [9] C. Greither, Relative integral normal bases in Q(ζp), J. Number Theory35 (1990), 180-193. Zbl0718.11053
- [10] C. Greither, D.R. Replogle, K. Rubin, A. Srivastav, Swan modules and Hilbert-Speiser number fields. J. Number Theory79 (1999), 164-173. Zbl0941.11044MR1718724
- [11] D. Hayes, Explicit class field theory for rational function fields. Trans. Amer. Math. soc.189 (1974), 77-91. Zbl0292.12018MR330106
- [12] J.T. Tate, Global class field theory. In Algebraic Number Theory, edited by J. W. S. Cassels and A. Frôhlich, Academic Press, 162-203, 1967. Zbl1179.11041MR220697
- [13] D. Thakur, Gauss sums for Fq [T]. Invent. Math.94 (1988), 105-112. Zbl0629.12014MR958591