An example of a function, which is not a d.c. function
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 1, page 149-154
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZelený, Miroslav. "An example of a $\mathcal {C}^{1,1}$ function, which is not a d.c. function." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 149-154. <http://eudml.org/doc/248957>.
@article{Zelený2002,
abstract = {Let $X = \ell _p$, $p \in (2,+\infty )$. We construct a function $f:X \rightarrow \mathbb \{R\}$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.},
author = {Zelený, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lipschitz Fréchet derivative; d.c. functions; Lipschitz Fréchet derivative; d.c. functions},
language = {eng},
number = {1},
pages = {149-154},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An example of a $\mathcal \{C\}^\{1,1\}$ function, which is not a d.c. function},
url = {http://eudml.org/doc/248957},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Zelený, Miroslav
TI - An example of a $\mathcal {C}^{1,1}$ function, which is not a d.c. function
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 149
EP - 154
AB - Let $X = \ell _p$, $p \in (2,+\infty )$. We construct a function $f:X \rightarrow \mathbb {R}$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.
LA - eng
KW - Lipschitz Fréchet derivative; d.c. functions; Lipschitz Fréchet derivative; d.c. functions
UR - http://eudml.org/doc/248957
ER -
References
top- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Longman (1993). (1993) Zbl0782.46019MR1211634
- Duda J., Veselý L., Zajíček L., On d.c. functions and mappings, submitted to Atti Sem. Mat. Fis. Univ. Modena.
- Veselý L., Zajíček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy mat.) 289 (1989), 52 pp. (1989) MR1016045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.