Page 1 Next

Displaying 1 – 20 of 174

Showing per page

A d.c. C 1 function need not be difference of convex C 1 functions

David Pavlica (2005)

Commentationes Mathematicae Universitatis Carolinae

In [2] a delta convex function on 2 is constructed which is strictly differentiable at 0 but it is not representable as a difference of two convex function of this property. We improve this result by constructing a delta convex function of class C 1 ( 2 ) which cannot be represented as a difference of two convex functions differentiable at 0. Further we give an example of a delta convex function differentiable everywhere which is not strictly differentiable at 0.

A note on propagation of singularities of semiconcave functions of two variables

Luděk Zajíček (2010)

Commentationes Mathematicae Universitatis Carolinae

P. Albano and P. Cannarsa proved in 1999 that, under some applicable conditions, singularities of semiconcave functions in n propagate along Lipschitz arcs. Further regularity properties of these arcs were proved by P. Cannarsa and Y. Yu in 2009. We prove that, for n = 2 , these arcs are very regular: they can be found in the form (in a suitable Cartesian coordinate system) ψ ( x ) = ( x , y 1 ( x ) - y 2 ( x ) ) , x [ 0 , α ] , where y 1 , y 2 are convex and Lipschitz on [ 0 , α ] . In other words: singularities propagate along arcs with finite turn.

A note on quasiconvex functions that are pseudoconvex.

Giorgio Giorgi (1987)

Trabajos de Investigación Operativa

In the present note we consider the definitions and properties of locally pseudo- and quasiconvex functions and give a sufficient condition for a locally quasiconvex function at a point x ∈ Rn, to be also locally pseudoconvex at the same point.

A note on strong pseudoconvexity

Vsevolod Ivanov (2008)

Open Mathematics

A strongly pseudoconvex function is generalized to non-smooth settings. A complete characterization of the strongly pseudoconvex radially lower semicontinuous functions is obtained.

A selection theorem of Helly type and its applications

Ehrhard Behrends, Kazimierz Nikodem (1995)

Studia Mathematica

We prove an abstract selection theorem for set-valued mappings with compact convex values in a normed space. Some special cases of this result as well as its applications to separation theory and Hyers-Ulam stability of affine functions are also given.

A strongly nonlinear problem arising in glaciology

Jacques Colinge, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The computation of glacier movements leads to a system of nonlinear partial differential equations. The existence and uniqueness of a weak solution is established by using the calculus of variations. A discretization by the finite element method is done. The solution of the discrete problem is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and its convergence numerically studied.

Affine and convex functions with respect to the logarithmic mean

Janusz Matkowski (2003)

Colloquium Mathematicae

The class of all functions f:(0,∞) → (0,∞) which are continuous at least at one point and affine with respect to the logarithmic mean is determined. Some related results concerning the functions convex with respect to the logarithmic mean are presented.

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L 1 by the sequence of linear strains of mapping bounded in Sobolev space W 1 , p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

Currently displaying 1 – 20 of 174

Page 1 Next