Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds

Ülo Lumiste

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 243-260
  • ISSN: 0010-2628

Abstract

top
By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.

How to cite

top

Lumiste, Ülo. "Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 243-260. <http://eudml.org/doc/248965>.

@article{Lumiste2002,
abstract = {By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.},
author = {Lumiste, Ülo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semiparallel submanifolds; flat normal connection; semisymmetric Riemannian manifolds; manifolds of conullity two; semiparallel submanifolds; semisymmetric Riemannian manifolds},
language = {eng},
number = {2},
pages = {243-260},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds},
url = {http://eudml.org/doc/248965},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Lumiste, Ülo
TI - Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 243
EP - 260
AB - By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.
LA - eng
KW - semiparallel submanifolds; flat normal connection; semisymmetric Riemannian manifolds; manifolds of conullity two; semiparallel submanifolds; semisymmetric Riemannian manifolds
UR - http://eudml.org/doc/248965
ER -

References

top
  1. Boeckx E., Foliated semi-symmetric spaces, Doctoral Thesis, Katholic Univ. Leuven, 1995. Zbl0846.53031
  2. Boeckx E., Kowalski O., Vanhecke L., Riemannian Manifolds of Conullity Two, World Scientific, London, 1996. Zbl0904.53006MR1462887
  3. Bishop R.L., O'Neill B., Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. (1969) Zbl0191.52002MR0251664
  4. Deprez J., Semi-parallel surfaces in Euclidean space, J. Geom. 25 (1985), 192-200. (1985) Zbl0582.53042MR0821680
  5. Dillen F., Nölker S., Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine Angew. Math. 435 (1993), 33-63. (1993) MR1203910
  6. Ferus D., Immersionen mit paralleler zweiter Fundamentalform, Manuscripta Math. 12 (1974), 153-162. (1974) Zbl0274.53058MR0339015
  7. Ferus D., Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93. (1974) Zbl0279.53048MR0370437
  8. Ferus D., Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93. (1980) Zbl0446.53041MR0565140
  9. Kobayashi S., Nomizu K., Foundations of Differential Geometry, vol. II, Interscience Publ., New York et al., 1969. Zbl0526.53001MR0238225
  10. Kowalski O., An explicit classification of 3 -dimensional Riemannian spaces satisfying R ( X , Y ) · R = 0 , Czech. Math. J. 46 (121) (1996), 427-474; preprint 1991, presented at the Geometry Meeting in Oberwolfach, October 1991. (1996) Zbl0879.53014MR1408298
  11. Lumiste Ü., Decomposition and classification theorems for semi-symmetric immersions, Proc. Estonian Acad. Sci. Phys. Math. 36 (1987), 414-417. (1987) Zbl0646.53003MR0925980
  12. Lumiste Ü., Semi-symmetric submanifold as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci. Phys. Math. 39 (1990), 1-8. (1990) Zbl0704.53017MR1059755
  13. Lumiste Ü., Irreducible normally flat semi-symmetric submanifolds, I and II, Izv. Vyssh. Uchebn. Zaved. Mat., no. 8 (1990), 45-53 and no.9 (1990), 32-40 (in Russian); English transl.: Soviet Math. (Iz. VUZ) 34(8) (1990), 50-59 and 34(9) (1990), 35-47. MR1087938
  14. Lumiste Ü., Semi-symmetric submanifolds, Problems in Geometry, Vol. 23, Acad. Sci. USSR, Allunion Inst. Scient. Techn. Inform., Moscow, 1991, pp.3-28 (in Russian); English transl.: J. Math. Sci. New York 70(2) (1994), 1609-1623. Zbl0763.53023
  15. Lumiste Ü., Semi-symmetric envelopes of some symmetric cylindrical submanifolds, Proc. Estonian Acad. Sci. Phys. Math. 40 (1991), 245-257. (1991) Zbl0802.53014MR1163442
  16. Lumiste Ü., Submanifolds with parallel fundamental form, in: F.J.E. Dillen and L.C.A. Verstraelen (Eds.): Handbook of Differential Geometry, vol. I, Elsevier Sc., Amsterdam, 2000, pp.779-864 (Chapter 7). Zbl0964.53002MR1736858
  17. Lumiste Ü., Semiparallel isometric immersions of 3 -dimensional semisymmetric Riemannian manifolds, Czech. Math. J., to appear. Zbl1080.53036MR2000064
  18. Lumiste Ü., Semiparallel submanifolds with plane generators of codimension two in a Euclidean space, Proc. Estonian Acad. Sci. Phys. Math. 50 (2001), 115-123. (2001) Zbl1004.53004MR1864980
  19. Lumiste Ü., University of Tartu and geometry of the 19-th century, in: Teaduse Ajaloo Lehekülgi Eestist, Vol. 2, Valgus, Tallinn, 1976, pp.36-68, (in Estonian, Summaries in Russian and German); English transl. in: V. Abramov, M. Rahula, and K. Riives (Eds.): Ülo Lumiste: {Mathematician}, Estonian Math. Soc., Tartu, 1999, pp.68-102. MR1723392
  20. McCleary J., Geometry from a Differentiable Viewpoint, Cambridge Univ. Press, Cambridge, 1994. Zbl0828.53001MR1314819
  21. Nut J.J. (Nuut, J.), Lobachevskian Geometry in Analytic Treatment, Publ. Acad. Sci. USSR, Moscow, 1961 (in Russian). 
  22. Phillips E., Karl M. Peterson: The earliest derivation of the Mainardi-Codazzi equations and the fundamental theorem of surface theory, Historia Math. 6 (1979), 137-163. (1979) Zbl0405.01024MR0530623
  23. Sinjukov N.S., Equidistant Riemannian manifolds, Annual Reports of the Odessa University, 1957, pp.133-135 (in Russian). 
  24. Sinjukov N.S., Geodesic Maps of Riemannian Spaces, Publishing House ``Nauka", Moscow, 1979 (in Russian). MR0552022
  25. Sternberg S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ 1964; 2nd ed. Chelsea Publishing, New York, 1983. Zbl0518.53001MR0891190
  26. Strübing W., Symmetric submanifolds of Riemannian manifolds., Math. Ann. 245 (1979), 37-44. (1979) MR0552577
  27. Szabó Z.I., Structure theorems on Riemannian spaces satisfying R ( X . Y ) · R = 0 , I. The local version, J. Differential Geom. 17 (1982), 531-582. (1982) MR0683165
  28. Takeuchi M., Parallel submanifolds of space forms, Manifolds and Lie Groups. Papers in honour of Y. Matsushima, Birkhäuser, Basel, 1981, pp.429-447. Zbl0481.53047MR0642871
  29. Wolf J.A., Spaces of Constant Curvature, Univ. of California, Berkeley, 1972; 4th ed. Publish or Perish, Berkeley, 1977. Zbl0556.53033MR0343213

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.