Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 243-260
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLumiste, Ülo. "Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 243-260. <http://eudml.org/doc/248965>.
@article{Lumiste2002,
abstract = {By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.},
author = {Lumiste, Ülo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semiparallel submanifolds; flat normal connection; semisymmetric Riemannian manifolds; manifolds of conullity two; semiparallel submanifolds; semisymmetric Riemannian manifolds},
language = {eng},
number = {2},
pages = {243-260},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds},
url = {http://eudml.org/doc/248965},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Lumiste, Ülo
TI - Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 243
EP - 260
AB - By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.
LA - eng
KW - semiparallel submanifolds; flat normal connection; semisymmetric Riemannian manifolds; manifolds of conullity two; semiparallel submanifolds; semisymmetric Riemannian manifolds
UR - http://eudml.org/doc/248965
ER -
References
top- Boeckx E., Foliated semi-symmetric spaces, Doctoral Thesis, Katholic Univ. Leuven, 1995. Zbl0846.53031
- Boeckx E., Kowalski O., Vanhecke L., Riemannian Manifolds of Conullity Two, World Scientific, London, 1996. Zbl0904.53006MR1462887
- Bishop R.L., O'Neill B., Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. (1969) Zbl0191.52002MR0251664
- Deprez J., Semi-parallel surfaces in Euclidean space, J. Geom. 25 (1985), 192-200. (1985) Zbl0582.53042MR0821680
- Dillen F., Nölker S., Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine Angew. Math. 435 (1993), 33-63. (1993) MR1203910
- Ferus D., Immersionen mit paralleler zweiter Fundamentalform, Manuscripta Math. 12 (1974), 153-162. (1974) Zbl0274.53058MR0339015
- Ferus D., Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93. (1974) Zbl0279.53048MR0370437
- Ferus D., Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93. (1980) Zbl0446.53041MR0565140
- Kobayashi S., Nomizu K., Foundations of Differential Geometry, vol. II, Interscience Publ., New York et al., 1969. Zbl0526.53001MR0238225
- Kowalski O., An explicit classification of -dimensional Riemannian spaces satisfying , Czech. Math. J. 46 (121) (1996), 427-474; preprint 1991, presented at the Geometry Meeting in Oberwolfach, October 1991. (1996) Zbl0879.53014MR1408298
- Lumiste Ü., Decomposition and classification theorems for semi-symmetric immersions, Proc. Estonian Acad. Sci. Phys. Math. 36 (1987), 414-417. (1987) Zbl0646.53003MR0925980
- Lumiste Ü., Semi-symmetric submanifold as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci. Phys. Math. 39 (1990), 1-8. (1990) Zbl0704.53017MR1059755
- Lumiste Ü., Irreducible normally flat semi-symmetric submanifolds, I and II, Izv. Vyssh. Uchebn. Zaved. Mat., no. 8 (1990), 45-53 and no.9 (1990), 32-40 (in Russian); English transl.: Soviet Math. (Iz. VUZ) 34(8) (1990), 50-59 and 34(9) (1990), 35-47. MR1087938
- Lumiste Ü., Semi-symmetric submanifolds, Problems in Geometry, Vol. 23, Acad. Sci. USSR, Allunion Inst. Scient. Techn. Inform., Moscow, 1991, pp.3-28 (in Russian); English transl.: J. Math. Sci. New York 70(2) (1994), 1609-1623. Zbl0763.53023
- Lumiste Ü., Semi-symmetric envelopes of some symmetric cylindrical submanifolds, Proc. Estonian Acad. Sci. Phys. Math. 40 (1991), 245-257. (1991) Zbl0802.53014MR1163442
- Lumiste Ü., Submanifolds with parallel fundamental form, in: F.J.E. Dillen and L.C.A. Verstraelen (Eds.): Handbook of Differential Geometry, vol. I, Elsevier Sc., Amsterdam, 2000, pp.779-864 (Chapter 7). Zbl0964.53002MR1736858
- Lumiste Ü., Semiparallel isometric immersions of -dimensional semisymmetric Riemannian manifolds, Czech. Math. J., to appear. Zbl1080.53036MR2000064
- Lumiste Ü., Semiparallel submanifolds with plane generators of codimension two in a Euclidean space, Proc. Estonian Acad. Sci. Phys. Math. 50 (2001), 115-123. (2001) Zbl1004.53004MR1864980
- Lumiste Ü., University of Tartu and geometry of the 19-th century, in: Teaduse Ajaloo Lehekülgi Eestist, Vol. 2, Valgus, Tallinn, 1976, pp.36-68, (in Estonian, Summaries in Russian and German); English transl. in: V. Abramov, M. Rahula, and K. Riives (Eds.): Ülo Lumiste: {Mathematician}, Estonian Math. Soc., Tartu, 1999, pp.68-102. MR1723392
- McCleary J., Geometry from a Differentiable Viewpoint, Cambridge Univ. Press, Cambridge, 1994. Zbl0828.53001MR1314819
- Nut J.J. (Nuut, J.), Lobachevskian Geometry in Analytic Treatment, Publ. Acad. Sci. USSR, Moscow, 1961 (in Russian).
- Phillips E., Karl M. Peterson: The earliest derivation of the Mainardi-Codazzi equations and the fundamental theorem of surface theory, Historia Math. 6 (1979), 137-163. (1979) Zbl0405.01024MR0530623
- Sinjukov N.S., Equidistant Riemannian manifolds, Annual Reports of the Odessa University, 1957, pp.133-135 (in Russian).
- Sinjukov N.S., Geodesic Maps of Riemannian Spaces, Publishing House ``Nauka", Moscow, 1979 (in Russian). MR0552022
- Sternberg S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ 1964; 2nd ed. Chelsea Publishing, New York, 1983. Zbl0518.53001MR0891190
- Strübing W., Symmetric submanifolds of Riemannian manifolds., Math. Ann. 245 (1979), 37-44. (1979) MR0552577
- Szabó Z.I., Structure theorems on Riemannian spaces satisfying , I. The local version, J. Differential Geom. 17 (1982), 531-582. (1982) MR0683165
- Takeuchi M., Parallel submanifolds of space forms, Manifolds and Lie Groups. Papers in honour of Y. Matsushima, Birkhäuser, Basel, 1981, pp.429-447. Zbl0481.53047MR0642871
- Wolf J.A., Spaces of Constant Curvature, Univ. of California, Berkeley, 1972; 4th ed. Publish or Perish, Berkeley, 1977. Zbl0556.53033MR0343213
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.