An explicit classification of 3-dimensional Riemannian spaces satisfying
Czechoslovak Mathematical Journal (1996)
- Volume: 46, Issue: 3, page 427-474
- ISSN: 0011-4642
Access Full Article
topHow to cite
topKowalski, Oldřich. "An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$." Czechoslovak Mathematical Journal 46.3 (1996): 427-474. <http://eudml.org/doc/30322>.
@article{Kowalski1996,
author = {Kowalski, Oldřich},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riemannian space; symmetric space; semi-symmetric space},
language = {eng},
number = {3},
pages = {427-474},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$},
url = {http://eudml.org/doc/30322},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Kowalski, Oldřich
TI - An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$
JO - Czechoslovak Mathematical Journal
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 46
IS - 3
SP - 427
EP - 474
LA - eng
KW - Riemannian space; symmetric space; semi-symmetric space
UR - http://eudml.org/doc/30322
ER -
References
top- Nonhomogeneous relatives of symmetric spaces, Differential Geometry and its Applications 4 (1994), 45–69. (1994) MR1264908
- Leçons sur la géométrie des espaces de Riemann. 2nd edition, Paris, 1946. (1946) MR0020842
- Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945. (1945) Zbl0063.00734MR0016174
- Riemannian 3-manifolds with constant Ricci roots , Nagoya Math. J. 132 (1993), 1–36. (1993) MR1253692
- Foundations of differential geometry, vol. I, Interscience Publishers, New York London, 1963. (1963) MR0152974
- New examples of nonhomogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space, C.R. Acad. Sci. Paris, Série I, 311 (1990), 355–360. (1990) MR1071643
- Curvature homogeneous Riemannian manifolds, J. Math. Pures et Appl. 71 (1992), 471–501. (1992) MR1193605
- 10.2969/jmsj/04430461, J. Math. Soc. Japan 44 (1992), 461–484. (1992) MR1167378DOI10.2969/jmsj/04430461
- Semi-symmetric submanifold as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci. Phys. Math. No1 35 (1990), 1–8. (1990) Zbl0704.53017
- 10.2748/tmj/1178243217, Tôhoku Math. J. 20 (1968), 46–59. (1968) Zbl0174.53301MR0226549DOI10.2748/tmj/1178243217
- 10.2996/kmj/1138847016, Kodai Math. Sem. Rep. 26 (1975), 343–347. (1975) MR0438253DOI10.2996/kmj/1138847016
- On geodesic maps of Riemannian spaces (Russian), Trudy Vsesojuz, Matem. Sjezda (1956), 167–168. (1956)
- Geodesic maps of Riemannian spaces (Russian), Publishing House “Nauka”, Moscow, 1979, pp. 256. (1979) MR0552022
- 10.4310/jdg/1214437486, J. Differential Geometry 17 (1982), 531–582. (1982) MR0683165DOI10.4310/jdg/1214437486
- Structure theorems on Riemannian manifolds satisfying , II, Global version. Geometriae Dedicata (1985), 65–108. (1985) MR0797152
- Classification and construction of complete hypersurfaces satisfying , Acta Sci. Math. 47 (1984), 321–348. (1984) MR0783309
- An example of Riemannian manifold satisfying but not , Tôhoku Math. J. 24 (1972), 105–108. (1972) MR0319109
Citations in EuDML Documents
top- Oldřich Kowalski, Masami Sekizawa, Local isometry classes of Riemannian -manifolds with constant Ricci eigenvalues
- Krishnendu De, Uday Chand De, Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
- Norio Hashimoto, Masami Sekizawa, Three-dimensional conformally flat pseudo-symmetric spaces of constant type
- Eric Boeckx, Lieven Vanhecke, Unit tangent sphere bundles with constant scalar curvature
- Ülo Lumiste, Semiparallel isometric immersions of 3-dimensional semisymmetric Riemannian manifolds
- Ülo Lumiste, Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.