Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type

Silvia I. Hartzstein; Beatriz E. Viviani

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 4, page 723-754
  • ISSN: 0010-2628

Abstract

top
In the setting of spaces of homogeneous-type, we define the Integral, I φ , and Derivative, D φ , operators of order φ , where φ is a function of positive lower type and upper type less than 1 , and show that I φ and D φ are bounded from Lipschitz spaces Λ ξ to Λ ξ φ and Λ ξ / φ respectively, with suitable restrictions on the quasi-increasing function ξ in each case. We also prove that I φ and D φ are bounded from the generalized Besov B ˙ p ψ , q , with 1 p , q < , and Triebel-Lizorkin spaces F ˙ p ψ , q , with 1 < p , q < , of order ψ to those of order φ ψ and ψ / φ respectively, where ψ is the quotient of two quasi-increasing functions of adequate upper types.

How to cite

top

Hartzstein, Silvia I., and Viviani, Beatriz E.. "Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 723-754. <http://eudml.org/doc/248968>.

@article{Hartzstein2002,
abstract = {In the setting of spaces of homogeneous-type, we define the Integral, $I_\{\phi \}$, and Derivative, $D_\{\phi \}$, operators of order $\phi $, where $\phi $ is a function of positive lower type and upper type less than $1$, and show that $I_\{\phi \}$ and $D_\{\phi \}$ are bounded from Lipschitz spaces $\Lambda ^\{\xi \}$ to $\Lambda ^\{\xi \phi \}$ and $\Lambda ^\{\xi /\phi \}$ respectively, with suitable restrictions on the quasi-increasing function $\xi $ in each case. We also prove that $I_\{\phi \}$ and $D_\{\phi \}$ are bounded from the generalized Besov $\dot\{B\}_\{p\}^\{\psi , q\}$, with $1 \le p, q < \infty $, and Triebel-Lizorkin spaces $\dot\{F\}_\{p\}^\{\psi , q\}$, with $1 < p, q < \infty $, of order $\psi $ to those of order $\phi \psi $ and $\psi /\phi $ respectively, where $\psi $ is the quotient of two quasi-increasing functions of adequate upper types.},
author = {Hartzstein, Silvia I., Viviani, Beatriz E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces; Besov spaces; Triebel-Lizorkin spaces; integral; derivative; functional order},
language = {eng},
number = {4},
pages = {723-754},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type},
url = {http://eudml.org/doc/248968},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Hartzstein, Silvia I.
AU - Viviani, Beatriz E.
TI - Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 723
EP - 754
AB - In the setting of spaces of homogeneous-type, we define the Integral, $I_{\phi }$, and Derivative, $D_{\phi }$, operators of order $\phi $, where $\phi $ is a function of positive lower type and upper type less than $1$, and show that $I_{\phi }$ and $D_{\phi }$ are bounded from Lipschitz spaces $\Lambda ^{\xi }$ to $\Lambda ^{\xi \phi }$ and $\Lambda ^{\xi /\phi }$ respectively, with suitable restrictions on the quasi-increasing function $\xi $ in each case. We also prove that $I_{\phi }$ and $D_{\phi }$ are bounded from the generalized Besov $\dot{B}_{p}^{\psi , q}$, with $1 \le p, q < \infty $, and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi , q}$, with $1 < p, q < \infty $, of order $\psi $ to those of order $\phi \psi $ and $\psi /\phi $ respectively, where $\psi $ is the quotient of two quasi-increasing functions of adequate upper types.
LA - eng
KW - integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces; Besov spaces; Triebel-Lizorkin spaces; integral; derivative; functional order
UR - http://eudml.org/doc/248968
ER -

References

top
  1. Blasco O., Weighted Lipschitz spaces defined by a Banach space, García-Cuerva, J. et al., Fourier Analysis and Partial Differential Equations, CRC, 1995, Chapter 7, pp.131-140. Zbl0870.46021MR1330235
  2. Frazier M., Jawerth B., Weiss G., Littlewood-Paley theory and the study of function spaces, CBMS, Regional Conference Series in Math., No. 79, 1991. Zbl0757.42006MR1107300
  3. Gatto A.E., Segovia C., Vági S., On fractional differentiation and integration on spaces of homogeneous type, Rev. Mat. Iberoamericana 12 2 (1996), 111-145. (1996) MR1387588
  4. Gatto A.E., Vági S., On Sobolev spaces of fractional order and ϵ -families of operators on spaces of homogeneous type, Studia Math. 133.1 (1999), 19-27. (1999) MR1671965
  5. Hartzstein S.I. Acotación de operadores de Calderón-Zygmund en espacios de Triebel-Lizorkin y de Besov generalizados sobre espacios de tipo homogéneo, Thesis, 2000, UNL, Santa Fe, Argentina, . 
  6. Hartzstein S.I., Viviani B.E., T 1 theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type, Revista de la Unión Matemática Argentina 42 1 (2000), 51-73. (2000) Zbl0995.42011MR1852730
  7. Han Y.-S., Sawyer E.T., Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Memoirs Amer. Math. Soc., Vol. 110, No .530, 1994. Zbl0806.42013MR1214968
  8. Iaffei B., Espacios Lipschitz generalizados y operadores invariantes por traslaciones, Thesis, UNL, 1996. 
  9. Janson S., Generalization on Lipschitz spaces and applications to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), 959-982. (1980) MR0596123
  10. Macías R.A., Segovia C., Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. (1979) MR0546295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.