Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
Silvia I. Hartzstein; Beatriz E. Viviani
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 4, page 723-754
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHartzstein, Silvia I., and Viviani, Beatriz E.. "Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 723-754. <http://eudml.org/doc/248968>.
@article{Hartzstein2002,
abstract = {In the setting of spaces of homogeneous-type, we define the Integral, $I_\{\phi \}$, and Derivative, $D_\{\phi \}$, operators of order $\phi $, where $\phi $ is a function of positive lower type and upper type less than $1$, and show that $I_\{\phi \}$ and $D_\{\phi \}$ are bounded from Lipschitz spaces $\Lambda ^\{\xi \}$ to $\Lambda ^\{\xi \phi \}$ and $\Lambda ^\{\xi /\phi \}$ respectively, with suitable restrictions on the quasi-increasing function $\xi $ in each case. We also prove that $I_\{\phi \}$ and $D_\{\phi \}$ are bounded from the generalized Besov $\dot\{B\}_\{p\}^\{\psi , q\}$, with $1 \le p, q < \infty $, and Triebel-Lizorkin spaces $\dot\{F\}_\{p\}^\{\psi , q\}$, with $1 < p, q < \infty $, of order $\psi $ to those of order $\phi \psi $ and $\psi /\phi $ respectively, where $\psi $ is the quotient of two quasi-increasing functions of adequate upper types.},
author = {Hartzstein, Silvia I., Viviani, Beatriz E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces; Besov spaces; Triebel-Lizorkin spaces; integral; derivative; functional order},
language = {eng},
number = {4},
pages = {723-754},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type},
url = {http://eudml.org/doc/248968},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Hartzstein, Silvia I.
AU - Viviani, Beatriz E.
TI - Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 723
EP - 754
AB - In the setting of spaces of homogeneous-type, we define the Integral, $I_{\phi }$, and Derivative, $D_{\phi }$, operators of order $\phi $, where $\phi $ is a function of positive lower type and upper type less than $1$, and show that $I_{\phi }$ and $D_{\phi }$ are bounded from Lipschitz spaces $\Lambda ^{\xi }$ to $\Lambda ^{\xi \phi }$ and $\Lambda ^{\xi /\phi }$ respectively, with suitable restrictions on the quasi-increasing function $\xi $ in each case. We also prove that $I_{\phi }$ and $D_{\phi }$ are bounded from the generalized Besov $\dot{B}_{p}^{\psi , q}$, with $1 \le p, q < \infty $, and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi , q}$, with $1 < p, q < \infty $, of order $\psi $ to those of order $\phi \psi $ and $\psi /\phi $ respectively, where $\psi $ is the quotient of two quasi-increasing functions of adequate upper types.
LA - eng
KW - integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces; Besov spaces; Triebel-Lizorkin spaces; integral; derivative; functional order
UR - http://eudml.org/doc/248968
ER -
References
top- Blasco O., Weighted Lipschitz spaces defined by a Banach space, García-Cuerva, J. et al., Fourier Analysis and Partial Differential Equations, CRC, 1995, Chapter 7, pp.131-140. Zbl0870.46021MR1330235
- Frazier M., Jawerth B., Weiss G., Littlewood-Paley theory and the study of function spaces, CBMS, Regional Conference Series in Math., No. 79, 1991. Zbl0757.42006MR1107300
- Gatto A.E., Segovia C., Vági S., On fractional differentiation and integration on spaces of homogeneous type, Rev. Mat. Iberoamericana 12 2 (1996), 111-145. (1996) MR1387588
- Gatto A.E., Vági S., On Sobolev spaces of fractional order and -families of operators on spaces of homogeneous type, Studia Math. 133.1 (1999), 19-27. (1999) MR1671965
- Hartzstein S.I. Acotación de operadores de Calderón-Zygmund en espacios de Triebel-Lizorkin y de Besov generalizados sobre espacios de tipo homogéneo, Thesis, 2000, UNL, Santa Fe, Argentina, .
- Hartzstein S.I., Viviani B.E., theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type, Revista de la Unión Matemática Argentina 42 1 (2000), 51-73. (2000) Zbl0995.42011MR1852730
- Han Y.-S., Sawyer E.T., Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Memoirs Amer. Math. Soc., Vol. 110, No .530, 1994. Zbl0806.42013MR1214968
- Iaffei B., Espacios Lipschitz generalizados y operadores invariantes por traslaciones, Thesis, UNL, 1996.
- Janson S., Generalization on Lipschitz spaces and applications to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), 959-982. (1980) MR0596123
- Macías R.A., Segovia C., Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. (1979) MR0546295
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.