Curvature homogeneous spaces whose curvature tensors have large symmetries
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 283-297
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTsukada, Kazumi. "Curvature homogeneous spaces whose curvature tensors have large symmetries." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 283-297. <http://eudml.org/doc/248970>.
@article{Tsukada2002,
abstract = {We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras $\mathfrak \{h\}$ of $\mathfrak \{so\}(n)$. In this paper we deal with the cases of $\mathfrak \{h\}=\mathfrak \{so\}(r) \oplus \mathfrak \{so\}(n-r)$$(2\le r \le n-r)$, $\mathfrak \{so\}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.},
author = {Tsukada, Kazumi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations; locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations},
language = {eng},
number = {2},
pages = {283-297},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Curvature homogeneous spaces whose curvature tensors have large symmetries},
url = {http://eudml.org/doc/248970},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Tsukada, Kazumi
TI - Curvature homogeneous spaces whose curvature tensors have large symmetries
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 283
EP - 297
AB - We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras $\mathfrak {h}$ of $\mathfrak {so}(n)$. In this paper we deal with the cases of $\mathfrak {h}=\mathfrak {so}(r) \oplus \mathfrak {so}(n-r)$$(2\le r \le n-r)$, $\mathfrak {so}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.
LA - eng
KW - locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations; locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations
UR - http://eudml.org/doc/248970
ER -
References
top- Boeckx E., Kowalski O., Vanhecke L., Riemannian manifolds of conullity two, World Scientific, 1996. Zbl0904.53006MR1462887
- Borel A., Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc. 55 (1949), 580-587. (1949) Zbl0034.01603MR0029915
- Borel A., De Siebenthal J., Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221. (1949) Zbl0034.30701MR0032659
- Chi Q.S., Curvature characterization and classification of rank-one symmetric spaces, Pacific J. Math. 150 (1991), 31-42. (1991) Zbl0742.53018MR1120711
- Ferus D., Totally geodesic foliations, Math. Ann. 188 (1970), 313-316. (1970) Zbl0194.52804MR0271872
- Gilkey P., Swann A., Vanhecke L., Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320. (1995) Zbl0848.53023MR1348819
- Iwahori N., Some remarks on tensor invariants , , , J. Math. Soc. Japan 10 (1958), 145-160. (1958) MR0124410
- Kiyota Y., Tsukada K., Curvature tensors and Singer invariants of four-dimensional homogeneous spaces, Comment. Math. Univ. Carolinae 40 (1999), 723-733. (1999) Zbl1020.53032MR1756548
- Montgomery D., Samelson H., Transformation groups of spheres, Ann. Math. 44 (1943), 454-470. (1943) Zbl0063.04077MR0008817
- Nicolodi L., Tricerri F., On two theorems of I.M. Singer about homogeneous spaces, Ann. Global Anal. Geom. 8 (1990), 193-209. (1990) Zbl0676.53058MR1088511
- Obata M., On subgroups of the orthogonal group, Trans. Amer. Math. Soc. 87 (1958), 347-358. (1958) Zbl0080.02204MR0095205
- Podestà F., Tricerri F., Riemannian manifolds with special curvature tensors, Rend. Istit. Mat. Univ. Trieste 26 (1994), 95-101. (1994) MR1363915
- Singer I.M., Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) Zbl0171.42503MR0131248
- Tricerri F., Vanhecke L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. (1981) Zbl0484.53014MR0626479
- Tsukada K., Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244. (1988) Zbl0651.53037MR0943821
- Tsukada K., The Singer invariant of homogeneous spaces, Proceedings of the Fourth International Workshop on Differential Geometry, Transilvania University Press, 1999, pp.274-280. Zbl1075.53520
- Wang M., Ziller W., Symmetric spaces and strongly isotropy irreducible spaces, Math. Ann. 296 (1993), 285-326. (1993) Zbl0804.53075MR1219904
- Ziller W., Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351-358. (1982) Zbl0469.53043MR0661203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.