Curvature homogeneous spaces whose curvature tensors have large symmetries

Kazumi Tsukada

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 283-297
  • ISSN: 0010-2628

Abstract

top
We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras 𝔥 of 𝔰𝔬 ( n ) . In this paper we deal with the cases of 𝔥 = 𝔰𝔬 ( r ) 𝔰𝔬 ( n - r ) ( 2 r n - r ) , 𝔰𝔬 ( n - 2 ) , and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.

How to cite

top

Tsukada, Kazumi. "Curvature homogeneous spaces whose curvature tensors have large symmetries." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 283-297. <http://eudml.org/doc/248970>.

@article{Tsukada2002,
abstract = {We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras $\mathfrak \{h\}$ of $\mathfrak \{so\}(n)$. In this paper we deal with the cases of $\mathfrak \{h\}=\mathfrak \{so\}(r) \oplus \mathfrak \{so\}(n-r)$$(2\le r \le n-r)$, $\mathfrak \{so\}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.},
author = {Tsukada, Kazumi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations; locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations},
language = {eng},
number = {2},
pages = {283-297},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Curvature homogeneous spaces whose curvature tensors have large symmetries},
url = {http://eudml.org/doc/248970},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Tsukada, Kazumi
TI - Curvature homogeneous spaces whose curvature tensors have large symmetries
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 283
EP - 297
AB - We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras $\mathfrak {h}$ of $\mathfrak {so}(n)$. In this paper we deal with the cases of $\mathfrak {h}=\mathfrak {so}(r) \oplus \mathfrak {so}(n-r)$$(2\le r \le n-r)$, $\mathfrak {so}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.
LA - eng
KW - locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations; locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations
UR - http://eudml.org/doc/248970
ER -

References

top
  1. Boeckx E., Kowalski O., Vanhecke L., Riemannian manifolds of conullity two, World Scientific, 1996. Zbl0904.53006MR1462887
  2. Borel A., Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc. 55 (1949), 580-587. (1949) Zbl0034.01603MR0029915
  3. Borel A., De Siebenthal J., Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221. (1949) Zbl0034.30701MR0032659
  4. Chi Q.S., Curvature characterization and classification of rank-one symmetric spaces, Pacific J. Math. 150 (1991), 31-42. (1991) Zbl0742.53018MR1120711
  5. Ferus D., Totally geodesic foliations, Math. Ann. 188 (1970), 313-316. (1970) Zbl0194.52804MR0271872
  6. Gilkey P., Swann A., Vanhecke L., Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320. (1995) Zbl0848.53023MR1348819
  7. Iwahori N., Some remarks on tensor invariants O ( n ) , U ( n ) , S p ( n ) , J. Math. Soc. Japan 10 (1958), 145-160. (1958) MR0124410
  8. Kiyota Y., Tsukada K., Curvature tensors and Singer invariants of four-dimensional homogeneous spaces, Comment. Math. Univ. Carolinae 40 (1999), 723-733. (1999) Zbl1020.53032MR1756548
  9. Montgomery D., Samelson H., Transformation groups of spheres, Ann. Math. 44 (1943), 454-470. (1943) Zbl0063.04077MR0008817
  10. Nicolodi L., Tricerri F., On two theorems of I.M. Singer about homogeneous spaces, Ann. Global Anal. Geom. 8 (1990), 193-209. (1990) Zbl0676.53058MR1088511
  11. Obata M., On subgroups of the orthogonal group, Trans. Amer. Math. Soc. 87 (1958), 347-358. (1958) Zbl0080.02204MR0095205
  12. Podestà F., Tricerri F., Riemannian manifolds with special curvature tensors, Rend. Istit. Mat. Univ. Trieste 26 (1994), 95-101. (1994) MR1363915
  13. Singer I.M., Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) Zbl0171.42503MR0131248
  14. Tricerri F., Vanhecke L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. (1981) Zbl0484.53014MR0626479
  15. Tsukada K., Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244. (1988) Zbl0651.53037MR0943821
  16. Tsukada K., The Singer invariant of homogeneous spaces, Proceedings of the Fourth International Workshop on Differential Geometry, Transilvania University Press, 1999, pp.274-280. Zbl1075.53520
  17. Wang M., Ziller W., Symmetric spaces and strongly isotropy irreducible spaces, Math. Ann. 296 (1993), 285-326. (1993) Zbl0804.53075MR1219904
  18. Ziller W., Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351-358. (1982) Zbl0469.53043MR0661203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.