Locally compact linearly Lindelöf spaces

Kenneth Kunen

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 1, page 155-158
  • ISSN: 0010-2628

Abstract

top
There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel'skii and Buzyakova.

How to cite

top

Kunen, Kenneth. "Locally compact linearly Lindelöf spaces." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 155-158. <http://eudml.org/doc/248975>.

@article{Kunen2002,
abstract = {There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel'skii and Buzyakova.},
author = {Kunen, Kenneth},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linearly Lindelöf; weak P-point; linearly Lindelöf; weak P-point},
language = {eng},
number = {1},
pages = {155-158},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Locally compact linearly Lindelöf spaces},
url = {http://eudml.org/doc/248975},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Kunen, Kenneth
TI - Locally compact linearly Lindelöf spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 155
EP - 158
AB - There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel'skii and Buzyakova.
LA - eng
KW - linearly Lindelöf; weak P-point; linearly Lindelöf; weak P-point
UR - http://eudml.org/doc/248975
ER -

References

top
  1. Arhangel'skii A.V., Buzyakova R.Z., Convergence in compacta and linear Lindelöfness, Comment. Math. Univ. Carolinae 39 (1998), 159-166. (1998) Zbl0937.54022MR1623006
  2. Baker J., Kunen K., Limits in the uniform ultrafilters, Trans. Amer. Math. Soc. 353 (2001), 4083-4093. (2001) Zbl0972.54019MR1837221
  3. Chang C.C., Keisler H.J., Model Theory, Third Edition, North-Holland, 1990. Zbl0697.03022MR1059055
  4. Dow A., Good and OK ultrafilters, Trans. Amer. Math. Soc. 290 (1985), 145-160. (1985) Zbl0532.54021MR0787959
  5. Keisler H.J., Good ideals in fields of sets, Ann. of Math. 79 (1964), 338-359. (1964) Zbl0137.00803MR0166105
  6. Keisler H.J., Ultraproducts of finite sets, J. Symbolic Logic 32 (1967), 47-57. (1967) Zbl0153.01702MR0235998
  7. Kunen K., Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299-306. (1972) MR0314619

NotesEmbed ?

top

You must be logged in to post comments.