Convergence in compacta and linear Lindelöfness
Aleksander V. Arhangel'skii; Raushan Z. Buzyakova
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 1, page 159-166
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArhangel'skii, Aleksander V., and Buzyakova, Raushan Z.. "Convergence in compacta and linear Lindelöfness." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 159-166. <http://eudml.org/doc/248237>.
@article{Arhangelskii1998,
abstract = {Let $X$ be a compact Hausdorff space with a point $x$ such that $X\setminus \lbrace x\rbrace $ is linearly Lindelöf. Is then $X$ first countable at $x$? What if this is true for every $x$ in $X$? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when $X$ is, in addition, $\omega $-monolithic. We also prove that if $X$ is compact, Hausdorff, and $X\setminus \lbrace x\rbrace $ is strongly discretely Lindelöf, for every $x$ in $X$, then $X$ is first countable. An example of linearly Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing open problems are formulated.},
author = {Arhangel'skii, Aleksander V., Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {point of complete accumulation; linearly Lindelöf space; local compactness; first countability; $\kappa $-accessible diagonal; point of complete accumulation; linearly Lindelöf space; local compactness; first countability; -accessible diagonal},
language = {eng},
number = {1},
pages = {159-166},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convergence in compacta and linear Lindelöfness},
url = {http://eudml.org/doc/248237},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Arhangel'skii, Aleksander V.
AU - Buzyakova, Raushan Z.
TI - Convergence in compacta and linear Lindelöfness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 159
EP - 166
AB - Let $X$ be a compact Hausdorff space with a point $x$ such that $X\setminus \lbrace x\rbrace $ is linearly Lindelöf. Is then $X$ first countable at $x$? What if this is true for every $x$ in $X$? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when $X$ is, in addition, $\omega $-monolithic. We also prove that if $X$ is compact, Hausdorff, and $X\setminus \lbrace x\rbrace $ is strongly discretely Lindelöf, for every $x$ in $X$, then $X$ is first countable. An example of linearly Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing open problems are formulated.
LA - eng
KW - point of complete accumulation; linearly Lindelöf space; local compactness; first countability; $\kappa $-accessible diagonal; point of complete accumulation; linearly Lindelöf space; local compactness; first countability; -accessible diagonal
UR - http://eudml.org/doc/248237
ER -
References
top- Alexandroff P.S., Urysohn P.S., Memoire sur les espaces topologiques compacts, Nederl. Akad. Wetensch. Proc. Ser. A 14 (1929), 1-96. (1929)
- Arhangel'skii A.V., On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955. (1969)
- Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) MR0526012
- Arhangel'skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolinae 36.2 (1995), 303-325. (1995) MR1357532
- Arhangel'skii A.V., Buzyakova R.Z., On linearly Lindelöf and strongly discretely Lindelöf spaces, to appear in Proc. AMS, 1998. Zbl0930.54003MR1487356
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
- Haydon R., On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc. 29 (1974), 1-16. (1974) Zbl0294.28005MR0361745
- Hodel R.E., Cardinal Functions, 1, in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, pp.1-62, North-Holland, Amsterdam, 1984. MR0776620
- Hušek M., Topological spaces without -accessible diagonal, Comment. Math. Univ. Carolinae 18 (1977), 777-788. (1977) MR0515009
- Hušek M., Convergence versus character in compact spaces, Coll. Math. Soc. J. Bolyai 23 (1980), 647-651. (1980) MR0588812
- Juhász I., Cardinal Functions, in M. Hušek and J. van Mill, Ed-rs: Recent Progress in General Topology, North-Holland, Amsterdam, 1993. MR1229134
- Mischenko A.S., Finally compact spaces, Soviet Math. Dokl. 145 (1962), 1199-1202. (1962) MR0141070
- Rudin M.E., Some Conjectures, in: J. van Mill and G.M. Reed, Ed-ors, Open Problems in Topology (1990), pp.184-193, North-Holland, Amsterdam. MR1078646
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.