A note on condensations of C p ( X ) onto compacta

Aleksander V. Arhangel'skii; Oleg I. Pavlov

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 3, page 485-492
  • ISSN: 0010-2628

Abstract

top
A condensation is a one-to-one continuous mapping onto. It is shown that the space C p ( X ) of real-valued continuous functions on X in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum X (Theorem 19). However, there exists a non-metrizable compactum X such that C p ( X ) condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated.

How to cite

top

Arhangel'skii, Aleksander V., and Pavlov, Oleg I.. "A note on condensations of $C_p(X)$ onto compacta." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 485-492. <http://eudml.org/doc/248983>.

@article{Arhangelskii2002,
abstract = {A condensation is a one-to-one continuous mapping onto. It is shown that the space $C_p(X)$ of real-valued continuous functions on $X$ in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum $X$ (Theorem 19). However, there exists a non-metrizable compactum $X$ such that $C_p(X)$ condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated.},
author = {Arhangel'skii, Aleksander V., Pavlov, Oleg I.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {condensation; compactum; network; Lindelöf space; topology of pointwise convergence; $\sigma $-compact space; Eberlein compactum; Corson compactum; Borel set; monolithic space; tightness; condensation; compact space; topology of pointwise convergence; cardinal invariants},
language = {eng},
number = {3},
pages = {485-492},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on condensations of $C_p(X)$ onto compacta},
url = {http://eudml.org/doc/248983},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Arhangel'skii, Aleksander V.
AU - Pavlov, Oleg I.
TI - A note on condensations of $C_p(X)$ onto compacta
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 3
SP - 485
EP - 492
AB - A condensation is a one-to-one continuous mapping onto. It is shown that the space $C_p(X)$ of real-valued continuous functions on $X$ in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum $X$ (Theorem 19). However, there exists a non-metrizable compactum $X$ such that $C_p(X)$ condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated.
LA - eng
KW - condensation; compactum; network; Lindelöf space; topology of pointwise convergence; $\sigma $-compact space; Eberlein compactum; Corson compactum; Borel set; monolithic space; tightness; condensation; compact space; topology of pointwise convergence; cardinal invariants
UR - http://eudml.org/doc/248983
ER -

References

top
  1. Arhangelskii A.V., Continuous maps, factorization theorems, and function spaces, Trans. Moscow Math. Soc. 47 (1985), 1-22. (1985) 
  2. Arhangelskii A.V., Topological Function Spaces, Kluwer Academic Publishers, Dordrecht, 1992, p. 205. MR1144519
  3. Arhangelskii A.V., C p -theory, pp.1-56 in: M. Hus̆ek and J. van Mill, Eds, Recent Progress in General Topology, North-Holland, Amsterdam-London-New-York, 1992, 796 pp. 
  4. Arhangelskii A.V., On condensations of C p -spaces onto compacta, Proc. Amer. Math. Soc. 128 (2000), 1881-1883. (2000) MR1751998
  5. Arhangelskii A.V., Ponomarev V.I., Fundamentals of General Topology in Problems and Exercises, D. Reidel Publ. Co., Dordrecht-Boston, Mass., 1984. MR0785749
  6. Banach S., Livre Ecossais, Problem 1, 17:8, 1935; Colloq. Math. 1 (1947), p.150. (1947) 
  7. Dobrowolski T., Marciszewski W., Classification of function spaces with the topology determined by a countable dense set, Fund. Math. 148 (1995), 35-62. (1995) MR1354937
  8. Godefroy G., Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306. (1980) Zbl0475.46003MR0615679
  9. Juhasz I., Cardinal functions in topology, Math. Centre Tracts 34, Amsterdam, 1971. Zbl0479.54001MR0340021
  10. Marciszewski W., A function space C p ( X ) without a condensation onto a σ -compact space, submitted, 2001. Zbl1019.54012
  11. Marciszewski W., On a classification of pointwise compact sets of the first Baire class functions, Fund. Math. 133 (1989), 195-209. (1989) Zbl0719.54022MR1065902
  12. Pytkeev E.G., Upper bounds of topologies, Math. Notes 20:4 (1976), 831-837. (1976) MR0428237
  13. Tkachenko M.G., Bicompacta that are continuous images of sets everywhere dense in the product of spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. 27:10 (1979), 797-802. (1979) MR0603151
  14. Tkachenko M.G., On continuous images of spaces of functions, Siberian Math. J. 26:5 (1985), 159-167. (1985) MR0808711
  15. Tkachenko M.G., Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991), 21-37. (1991) Zbl0722.54039MR1093863
  16. Tkachenko M.G., On continuous images of dense subspaces of topological products, Uspekhi Mat. Nauk 34:6 (1979), 199-202. (1979) MR0562841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.