Quasiharmonic fields and Beltrami operators

Claudia Capone

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 363-377
  • ISSN: 0010-2628

Abstract

top
A quasiharmonic field is a pair = [ B , E ] of vector fields satisfying div B = 0 , curl E = 0 , and coupled by a distorsion inequality. For a given , we construct a matrix field 𝒜 = 𝒜 [ B , E ] such that 𝒜 E = B . This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator 𝒜 [ B , E ] and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence.

How to cite

top

Capone, Claudia. "Quasiharmonic fields and Beltrami operators." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 363-377. <http://eudml.org/doc/248989>.

@article{Capone2002,
abstract = {A quasiharmonic field is a pair $\mathcal \{F\} = [B,E]$ of vector fields satisfying $\operatorname\{div\} B=0$, $\operatorname\{curl\} E=0$, and coupled by a distorsion inequality. For a given $\mathcal \{F\}$, we construct a matrix field $\mathcal \{A\}=\mathcal \{A\}[B,E]$ such that $\{\mathcal \{A\}\} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\mathcal \{A\}[B,E]$ and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence.},
author = {Capone, Claudia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasiharmonic fields; Beltrami operator; elliptic partial differential equations; G-convergence; quasiharmonic field; Beltrami operator; elliptic partial differential equation; G-convergence},
language = {eng},
number = {2},
pages = {363-377},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quasiharmonic fields and Beltrami operators},
url = {http://eudml.org/doc/248989},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Capone, Claudia
TI - Quasiharmonic fields and Beltrami operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 363
EP - 377
AB - A quasiharmonic field is a pair $\mathcal {F} = [B,E]$ of vector fields satisfying $\operatorname{div} B=0$, $\operatorname{curl} E=0$, and coupled by a distorsion inequality. For a given $\mathcal {F}$, we construct a matrix field $\mathcal {A}=\mathcal {A}[B,E]$ such that ${\mathcal {A}} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\mathcal {A}[B,E]$ and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence.
LA - eng
KW - quasiharmonic fields; Beltrami operator; elliptic partial differential equations; G-convergence; quasiharmonic field; Beltrami operator; elliptic partial differential equation; G-convergence
UR - http://eudml.org/doc/248989
ER -

References

top
  1. Astala K., Recent Connections and Applications of Planar Quasiconformal Mappings, Progr. Math. 168 36-51 (1998). (1998) Zbl0908.30019MR1645796
  2. De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. U.M.I. 4 (1968), 135-137. (1968) MR0227827
  3. De Giorgi E., Spagnolo S., Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. U.M.I. 8 (1973), 391-411. (1973) Zbl0274.35002MR0348255
  4. Formica M.R., On the Γ -convergence of Laplace-Beltrami Operators in the plane, Ann. Acad. Sci. Fenn. Math. 25 (2000), 423-438. (2000) Zbl0955.30016MR1762427
  5. Francfort G.A., Murat F., Optimal bounds for conduction in two-dimensional, two-phase, Anisotropic media, Non-classical continuum mechanics, R.J. Knops and A.A. Lacey, Eds., London Mathematical Society Lecture Note Series 122, Cambridge, 1987, pp.197-212. Zbl0668.73018MR0926503
  6. Keller J.B., A theorem on the conductivity of a composite medium, J. Math. Phys. 5 (1964), 548-549. (1964) Zbl0129.44001MR0161559
  7. Koshelev A.I., Regularity of solutions of quasilinear elliptic systems, Engl.trans.: Russian Math. Survey 33 (1978), 1-52. (1978) MR0510669
  8. Iwaniec T., Sbordone C., Quasiharmonic fields, Ann. Inst. H. Poincaré-AN 18.5 (2001), 519-572. (2001) Zbl1068.30011MR1849688
  9. John O., Malý J., Stará J., Nowhere continuous solutions to elliptic systems, Comment. Math. Univ. Carolinae 30.1 (1989), 33-43. (1989) MR0995699
  10. Leonetti F., Nesi V., Quasiconformal solutions and a conjecture of Milton, J. Math. Pures Appl. 76 (1997), 109-124. (1997) MR1432370
  11. Liusterinik, Sobolev, Elements of Functional Analysis, (1965), Frederick Ungar Publishing Company London. (1965) 
  12. Marino A., Spagnolo S., Un tipo di approssimazione dell’operatore D i a i j D j con operatori D j ( b D j ) , Ann. Scu. Norm. Sup. Pisa 23 (1969), 657-673. (1969) MR0278128
  13. Meyers N., An L p -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scu. Norm. Pisa 17 (1963), 189-206. (1963) MR0159110
  14. Milton G.W., Modelling the properties of composites by laminates, in Homogenization and effective moduli of materials and media, Ericksen, Kinderleher, Kohn, Lions, Eds., IMA volumes in mathematics and its applications 1, Springer-Verlag, New York, 1986, pp.150-174. Zbl0631.73011MR0859415
  15. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936
  16. Murat F., Compacite par Compensation, Ann. Scu. Norm. Pisa 5 (1978), 489-507. (1978) Zbl0399.46022MR0506997
  17. Murat F., H-convergence, Seminaire d'Analyse Fonctionelle et Numerique, University of Alger, 1977/78. Zbl0920.35019
  18. Souček J., Singular solution to linear elliptic systems, Comment. Math. Univ. Carolinae 25 (1984), 273-281. (1984) MR0768815
  19. Spagnolo S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scu. Norm. Sup. Pisa 22 (1968), 571-597. (1968) MR0240443
  20. Spagnolo S., Some convergence problems, Sympos. Math. 18 (1976), 391-397. (1976) Zbl0332.46020MR0509184
  21. Tartar L., Homogeneisation et compacite par compensation, Cours Peccot, College de France, 1977. Zbl0406.35055
  22. Tartar L., Compensated Compactness and Applications to Partial Differential Equations, ed. by R.J. Knops, Pitman, London, Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV (1979), no. 39, 136-212. Zbl0437.35004MR0584398
  23. Tartar L., Convergence d'operateurs differentiels, Analisi Convessa Appl., Roma (1974), 101-104. (1974) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.