On the -convergence of Morrey operators
Maria Rosaria Formica; Carlo Sbordone
- Volume: 14, Issue: 1, page 33-49
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topFormica, Maria Rosaria, and Sbordone, Carlo. "On the $G$-convergence of Morrey operators." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.1 (2003): 33-49. <http://eudml.org/doc/252340>.
@article{Formica2003,
abstract = {Following Morrey [14] we associate to any measurable symmetric $2 \times 2$ matrix valued function $A(x)$ such that
$$\frac\{|\xi|^\{2\}\}\{K\} \le (A(x) \xi,\xi) \le K |\xi|^\{2\} \quad \text\{a.e.\} \quad x \in \Omega, \, \forall \xi \in \mathbb\{R\}^\{2\},$$$\Omega \in \mathbb\{R\}^\{2\}$ and to any $u \in W^\{1,2\}(\Omega)$ another symmetric $2 \times 2$ matrix valued function $\mathcal\{A\} = \mathcal\{A\}(A,u)$ with $det \, \mathcal\{A\} = 1$ and satisfying
$$\frac\{|\xi|^\{2\}\}\{K\} \le (\mathcal\{A\}(x) \xi,\xi) \le K |\xi|^\{2\} \quad \text\{a.e.\} \quad x \in \Omega, \, \forall \xi \in \mathbb\{R\}^\{2\},$$
The crucial property of $\mathcal\{A\}$ is that $\mathcal\{A\} \nabla u = A \nabla u$, if $\nabla u \neq 0$. We study the properties of $\mathcal\{A\}$ as a function of $A$ and $u$. In particular, we show that, if $A_\{b\} \rightarrow^\{G\} A$, $u_\{b\} \rightharpoonup u$, $\nabla u \neq 0$ and $div \, A_\{b\} \nabla u_\{b\} = 0$ then $\mathcal\{A\} (A_\{b\},u_\{b\}) \rightarrow^\{G\} \mathcal\{A\} (A, u)$.},
author = {Formica, Maria Rosaria, Sbordone, Carlo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Elliptic equations; G-convergence; Morrey matrices; -convergence},
language = {eng},
month = {3},
number = {1},
pages = {33-49},
publisher = {Accademia Nazionale dei Lincei},
title = {On the $G$-convergence of Morrey operators},
url = {http://eudml.org/doc/252340},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Formica, Maria Rosaria
AU - Sbordone, Carlo
TI - On the $G$-convergence of Morrey operators
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/3//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 1
SP - 33
EP - 49
AB - Following Morrey [14] we associate to any measurable symmetric $2 \times 2$ matrix valued function $A(x)$ such that
$$\frac{|\xi|^{2}}{K} \le (A(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$$\Omega \in \mathbb{R}^{2}$ and to any $u \in W^{1,2}(\Omega)$ another symmetric $2 \times 2$ matrix valued function $\mathcal{A} = \mathcal{A}(A,u)$ with $det \, \mathcal{A} = 1$ and satisfying
$$\frac{|\xi|^{2}}{K} \le (\mathcal{A}(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$
The crucial property of $\mathcal{A}$ is that $\mathcal{A} \nabla u = A \nabla u$, if $\nabla u \neq 0$. We study the properties of $\mathcal{A}$ as a function of $A$ and $u$. In particular, we show that, if $A_{b} \rightarrow^{G} A$, $u_{b} \rightharpoonup u$, $\nabla u \neq 0$ and $div \, A_{b} \nabla u_{b} = 0$ then $\mathcal{A} (A_{b},u_{b}) \rightarrow^{G} \mathcal{A} (A, u)$.
LA - eng
KW - Elliptic equations; G-convergence; Morrey matrices; -convergence
UR - http://eudml.org/doc/252340
ER -
References
top- CAPONE, C., Quasiharmonic fields and Beltrami operators. Comm. Math. Univ. Carolinae, 43, 2, 2002, 363-377. Zbl1069.35024MR1922134
- DE GIORGI, E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. U.M.I., 1, 1968, 135-137. Zbl0155.17603MR227827
- DE ARCANGELIS, - DONATO, P., On the convergence of Laplace-Beltrami operators associated to quasiregular mappings. Studia mathematica, t. LXXXVI, 1987, 189-204. Zbl0646.30024MR917047
- FORMICA, M.R., On the -convergence of Laplace-Beltrami operators in the plane. Annales Academiae Scientiarum Fennicae Matematica, vol. 25, 2000, 423-438. Zbl0955.30016MR1762427
- FORMICA, M.R., Degenerate Elliptic Operators with coefficients in EXP. Ph.D. thesis, Università di Napoli «Federico II», 2001. Zbl1053.47510
- FORMICA, M.R., Beltrami operators in the plane. Preprint n. 6, Aracne editrice, Roma2002. Zbl1098.47517MR1979563
- FRANCFORT, G.A. - MURAT, F., Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media. In: R.J. KNOPS - A.A. LACEY (eds.), «Nonclassical» continuum mechanics. London, Math. Soc. Lecture Notes Series, 122, Cambridge1987, 197-212. Zbl0668.73018MR926503DOI10.1017/CBO9780511662911.013
- GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies, 105, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
- GRECO, L. - SBORDONE, C., Sharp upper bounds for the degree of regularity of the solutions to an elliptic equation. Comm. P.D.E., 27, 5-6, 2002, 945-952. Zbl1019.35021MR1916553DOI10.1081/PDE-120004890
- IWANIEC, T. - SBORDONE, C., Quasiharmonic fields. Ann. Inst. H. Poincaré - AN 18, 5, 2001, 519-572. Zbl1068.30011MR1849688DOI10.1016/S0294-1449(00)00058-5
- JOHN, O. - MALY, J. - STARÁ, J., Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolinae, 30, 1, 1989, 33-43. Zbl0691.35024MR995699
- KOSHELEV, A.I., Regularity of solutions of quasilinear elliptic systems. Russian Math. Survey, 33, 1978, 1-52. Zbl0413.35033MR510669
- MALY, J., Finding equation from solutions. Draft1999.
- MORREY, C.B., On the solution of quasilinear elliptic partial differential equations. Trans. Amer. Math. Soc., 43, 1938, 126-166. JFM64.0460.02
- MURAT, F., Compacité par Compensation. Ann. Sc. Norm. Pisa, 5, 1978, 489-507. Zbl0399.46022MR506997
- PICCININI, L. - SPAGNOLO, S., On the Hölder Continuity of Solutions of Second Order Elliptic Equations in two Variables. Ann. Sc. Norm. Pisa, 26, 1972, 391-402. Zbl0237.35028MR361422
- SOUCEK, J., Singular solutions to linear elliptic systems. Comm. Math. Univ. Carolinae, 25, 1984, 273-281. Zbl0564.35008MR768815
- SPAGNOLO, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm Sup. Pisa, vol. 22, fasc. 4, 1968, 571-597. Zbl0174.42101MR240443
- SPAGNOLO, S., Some convergence problems. Symposia Mathematica, XVIII, 1976, 391-397. Zbl0332.46020MR509184
- TARTAR, L., Homogéneization et compacité par compensation. Cours Peccot, Collège de France, 1977. Zbl0544.47042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.