On the intrinsic geometry of a unit vector field
Yampolsky, Alexander L. Yampolsky, Alexander L.
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 299-317
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topYampolsky, Alexander L., Yampolsky, Alexander L.. "On the intrinsic geometry of a unit vector field." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 299-317. <http://eudml.org/doc/248993>.
@article{Yampolsky2002,
	abstract = {We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi _\omega $ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac\{c^2\}\{4\}$.},
	author = {Yampolsky, Alexander L., Yampolsky, Alexander L.},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {Sasaki metric; vector field; sectional curvature; totally geodesic submanifolds; unit vector field; Riemannian 2-manifold; tangent sphere bundle; Sasaki metric; sectional curvature; totally geodesic submanifolds},
	language = {eng},
	number = {2},
	pages = {299-317},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {On the intrinsic geometry of a unit vector field},
	url = {http://eudml.org/doc/248993},
	volume = {43},
	year = {2002},
}
TY  - JOUR
AU  - Yampolsky, Alexander L., Yampolsky, Alexander L.
TI  - On the intrinsic geometry of a unit vector field
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 43
IS  - 2
SP  - 299
EP  - 317
AB  - We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi _\omega $ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac{c^2}{4}$.
LA  - eng
KW  - Sasaki metric; vector field; sectional curvature; totally geodesic submanifolds; unit vector field; Riemannian 2-manifold; tangent sphere bundle; Sasaki metric; sectional curvature; totally geodesic submanifolds
UR  - http://eudml.org/doc/248993
ER  - 
References
top- Aminov Yu., The Geometry of Vector Fields, Gordon & Breach Publ., 2000. Zbl0965.53002MR1749926
 - Boeckx E., Vanhecke L., Harmonic and minimal radial vector fields, Acta Math. Hungar. 90 (2001), 317-331. (2001) Zbl1012.53040MR1910716
 - Boeckx E., Vanhecke L., Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77-93. (2000) Zbl0973.53053MR1775222
 - Boeckx E., Vanhecke L., Characteristic reflections on unit tangent sphere bundle, Houston J. Math. 23 (1997), 427-448. (1997) MR1690045
 - Borisenko A., Yampolsky A., The sectional curvature of the Sasaki metric of , Ukrain. Geom. Sb. 30 (1987), 10-17 English transl.: J. Soviet Math. 51 (1990), 5 2503-2508. (1990) MR0914771
 - Gluck H., Ziller W., On the volume of a unit vector field on the three-sphere, Comment. Math. Helv. 61 (1986), 177-192. (1986) Zbl0605.53022MR0856085
 - González-Dávila J.C., Vanhecke L., Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), 385-404. MR1795104
 - Kowalski O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold., J. Reine Angew. Math. 250 (1971), 124-129. (1971) Zbl0222.53044MR0286028
 - Sasaki S., On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354. (1958) Zbl0086.15003MR0112152
 - Klingenberg W, Sasaki S., Tangent sphere bundle of a -sphere, Tôhoku Math. J. 27 (1975), 45-57. (1975) Zbl0309.53036MR0362149
 - Yampolsky A., On the mean curvature of a unit vector field, Math. Publ. Debrecen, 2002, to appear. Zbl1010.53012MR1882460
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.